Modeling Micromechanics of Eigenstrain in Heterogeneous Media

Asim Tewari Department of Mechanical Engineering Indian Institute of Technology, Bombay

COMSOL Conference, November 2, 2012, Bangalore

apply from the Proceedings of the 2012 COMSOL Conference in Bangalore

Search

More Options

तालम् दरमम् श्रेष

Acknowledgement

Students

<u>PhD</u>

- 1. Deepak Kundalkar
- 2. Shashikant Joshi
- 3. Abhishek Tripathi
- 4. Ashish Saxena
- 5. Shashank Tiwari
- 6. Amit Sata
- 7. Sanjeev Kumar
- 8. Vivek Barnwal
- 9. Marrapu Bhargava
- 10. Sagar Telrandhe

<u>MTech</u>

- 1. Saurabh Arvariya
- 2. Abhay Ratna Pandey
- 3. Dattaprasad Lomate
- 4. Senthil Nathan

Previous students

- 1. Dheeraj Bansal
- 2. HarnishLakhani
- 3. Tadesse Billo
- 4. Pravin Pawar
- 5. Sandip Patil
- 6. Deepak Sharma
- 7. Ankit Pambhar

Research Assistants

- 1. Jitesh Vasavada
- 2. Ajay Tiwari
- 3. Manan Panchal

Collaborators

- Dr. Rajesh Raghavan (GM R&D)
- Dr. Harish Barshilia (NAL)
- Dr. Om Prakash (Boeing R&T)
- Mr. S. M. Vaidya (Godrej Aerospace)

Academia

Prof. S. Joshi (IITB) Prof. R. Singh (IITB) Prof. K.P. Karunakaran (IITB) Prof. B. Ravi (IITB) Prof. I. Samajdar (IITB) Prof. P. Pant (IITB) Prof. K. Narasimhan (IITB) Dr. Sushil Mishra (IITB) Prof. Chris Davies (Monash Univ.) Prof. Prabhakar Ranganathan (Monash Univ.) Prof. Ramesh Talreja (Texas A&M) Prof. A. Gokhale (Georgia Tech)

Asim Tewari • 3

Content

- 1. Basic Equations of micromechanics
- 2. Complexity of Real problems
- 3. Comsol Application

Heterogeneous Media

<u>Heterogeneous Media:</u> Any media which is not homogeneous.

Composite:

Any media which is mixture of several homogeneous media in some proportion.

Larger to smaller

Problem Definition

Basic Equations of Continuum Mechanics

$$\frac{\partial \sigma_{ji}}{\partial x_j} + f_i = 0 \quad \text{or} \quad \nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f} = 0$$

$$\boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)$$

$$\sigma_{ij} = L_{ijkl} \boldsymbol{\varepsilon}_{kl} \quad \text{or} \quad \boldsymbol{\varepsilon}_{ij} = M_{ijkl} \sigma_{kl}$$

$$u_i |_{S_u} = u_i^{(0)}$$

$$\sigma_{ij} n_j |_{S_{\sigma}} = p_i^{(0)}$$

Basic Equations of Continuum Mechanics

$$L_{ijkl}u_{k,lj} + f_i = 0 \quad \text{in } V,$$

$$u_i|_{S_u} = u_i^{(0)},$$

$$L_{ijkl}u_{k,l}n_j|_{S_\sigma} = p_i^{(0)}.$$

Localized force solution

$$L_{ijkl}u_{k,lj} + f_i = 0 \quad \text{in } V,$$

$$f_i \rightarrow 0$$
 as $x_1^2 + x_2^2 + x_3^2 \rightarrow \infty$

$$L_{ijkl}u_{k,l}n_{j}|_{S} = p_{i}^{(0)} \to 0 \text{ as } x_{1}^{2} + x_{2}^{2} + x_{3}^{2} \to \infty$$

$$u_i(\mathbf{x}) = \int_{-\infty}^{\infty} f_j(\mathbf{y}) G_{ij}^{\infty}(\mathbf{x}, \mathbf{y}) \, d\mathbf{y}$$

Eigenstrains

Eigenstrain is a generic name for any inelastic strain. $\varepsilon_{ii} = e_{ii} + \varepsilon_{ii}^*$

$$\sigma_{ij} = L_{ijkl} e_{kl} = L_{ijkl} (\varepsilon_{kl} - \varepsilon_{kl}^*)$$

- Thermal strains
- •Phase transformation strains
- Initial strains
- Plastic strains
- Misfit strains

$$\begin{cases} \frac{\partial \boldsymbol{\sigma}_{ji}}{\partial x_j} + f_i = 0\\ f_i = -L_{ijkl} \boldsymbol{\varepsilon}_{kl,j}^* \end{cases}$$

Origin of eigenstrain is usually due to some physical phenomenon other than mechanics of solid

Inclusions and Inhomogeneities

General Solution

Inclusion Eigenstrain as body force

Inhomogeneity Inhomogeneities as Inclusions with appropriate eigenstrain

Inhomogeneous Inhomogeneities Inhomogeneity with eigenstrain

The Real World Problems

Reality far more complex 1.Complex geometry 2.Multi physics 3.Fully coupled problems 4.Transient analysis

Problem Definition

The Comsol Model

Comsol Model:

- 1. Induction heating
- 2. Time-Temperature profile
- 3. Thermal strains (eigenstrains)
- 4. Gradient in eigenstrain leads to stresses
- 5. Thermal stress leads to fatigue

Time-Temperature variation

Thermal eigenstrains and stress

Time v/s Temperature plot

Principle Strain v/s Time plot

Asim Tewari • 18 Principle Stress v/s Time plot

Spatial variation of thermal stress

Effect of %NH3 on Nitriding potential

% NH3	10	20	30	40	50	60	70	80	90
K _N	0.12	0.28	0.51	0.86	1.414	2.37	4.26	8.9	28.5
ln (K _N)	-2.1203	-1.273	-0.6733	-0.1508	0.34642	0.86289	1.44927	2.18605	3.3499

	Expected	Fii	rst Step		Second Step			
Cycle	Case Depth	Temperature	Time	NH3	Temperature	Time	NH3	
	μm	deg C	hrs	% volume	deg C	hrs	% volume	
C1	130	520	2	70	560	6	50	
C2	170	520	2	70	560	8	50	
C3	220	520	3	70	560	12	50	

Nitriding layer

Asim Tewari • 21

Residual stress due to Nitriding layer

Residual stress plot for sample with 170 μ m case depth based on XRD results

EDS Nitrogen line profiles of samples a) 220mm & b) 140mm

Fatigue cracking

Lehrer diagram, giving the most stable phase of iron nitride as a function of temperature and nitriding potential

• Thermal fatigue test results representing life of the specimens

Specimen ID	S1C1	S2C1	S1C2	S2C2	S1C3	S2C3	S1C4	S2C4
Nitriding Case Depth / Compd	120/8	120/4	170 / 10	170 / 10	220 / 12	220/6	220/10	220 / 12
Optimal composition of		nitrided	ayer (compound layer			would be combination		
of γ' + ϵ ph	nich pro	lvided sufficient hardness to increase wear						
resista	good s	rength t	o impro	ve ther	nalfatio	ue life		

Summary

Thermal fatigue is a complex interaction of

- •Thermal stresses
- •Surface hardening
- •Residual stresses
- •Nitriding phase

Next Gen Model

- 1. Incorporate nitriding in the Comsol model
- 2. Validate submodels individually
- 3. Provide for hardness variations in the model

Conclusion

Micromechanics

Rigorous math framework exists Closed form solutions for simple problems Eigenstrains provides the multiphysics input

Reality far more complex Coupled multiphysics Transient analysis Complex geometries

The way ahead Coupling more physics Nitrogen reaction and diffusion process Martensite Transformation Incorporation of eigenstrains due to Residual stress Nitride layer Martensitic transformation Non-linear behavior