

Materials Science & Technology

Modelling the temperature-dependent dynamic behaviour of a timber bridge with asphalt pavement

B. Weber and G. Feltrin

Empa, Swiss Federal Laboratories for Materials Science and Technology

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Introduction

- Pedestrian bridges often exhibit excessive vibrations due to walking or jogging
- Avoid fundamental frequencies in ranges 1.6–2.4 Hz and 3.5–4.5 Hz
- Long-term monitoring shows large changes in frequencies with asphalt temperature
- Modelling of this effect provides insight for design

Bridge geometry

Elevation

Cross-section

Timber

Cross-laminated timber for deck

Glue-laminated timber for beams

- Orthotropic material: 3 Young's moduli, 3 shear moduli, 3 Poison's ratios
- For beam, only E_{\Box} and $G_{\Box \perp}$ important, but other values must be consistent.
- Cannot use isotropic material \rightarrow negative compressibility

Asphalt

- Asphalt is viscoelastic (temperature and frequency dependent)
- Complex modulus: storage modulus G', loss modulus G'', loss factor η $G^* = G' + iG'' = G'(1 + i\eta)$
- Consider only temperature dependence (constant frequency 4 Hz)
 Use constant bulk modulus → variable Poisson's ratio

Interior hinges

Actual construction with steel plate

Rigid connector

- Spring on relative rotation not implemented in V4.2a
- Possible with weak constraint, tricky in 3D with Euler parameters
- Constrain vertical displacement
 - Simple
 - Provides right rotational stiffness

Interface between asphalt and timber

 Elastic shear connection reduces bending stiffness

 Available in COMSOL on internal boundary

 Possible explanation: weak interface in plane without aggregate interlock

Complex eigenvalues

Asphalt: temperature-dependent complex shear modulus

 $G^* = G'(1 + i\eta_A)$

- Timber: isotropic loss factor $E^* = E(1 + i\eta_T)$ $\eta_T = 0.04 \Leftrightarrow \zeta = 0.02$
- Complex eigenvalue \rightarrow frequency and damping of total structure

$$\lambda = \zeta \omega_n - \mathrm{i} \, \omega_n \sqrt{1 - \zeta^2}$$

Mode shapes and calibration

- For T= 50°C no influence of asphalt (except mass)
- Three parameters with weak coupling:
 - Mode 1: Young's modulus of timber
 - Mode 2: Rotational stiffness in hinges
 - Mode 3: Shear modulus of timber
- For T= 0°C large influence of asphalt
- Calibration of timber-asphalt interface stiffness

Results

Conclusions

- Mechanical model with
 - Orthotropic elastic material (timber)
 - Viscoelastic material (asphalt)
 - Elastic interface between asphalt and timber deck
 - Complex eigenvalue problem
 - Temperature sweep
- Good agreement with measurement (4 tuning parameters)
 - Elastic interface: single parameter improves all frequencies and damping values
- Large influence of asphalt temperature
 - Fundamental frequency 3.2–4 Hz
 - Damping largest at 20°C, no influence at high and low temperatures

Thank you!