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Abstract 
When treating fractures of the accessory carpal bones in horses, it is important to understand the forces that 

implants (screws and plates) must withstand. The etiology of the fracture is not fully understood, but their high 

incidence during exercise suggests a relation to biomechanical forces. Detailed descriptions of the intact and 

fractured accessory carpal bone's morphology and functional anatomy, which are crucial for stable fracture 

fixation, are lacking. Therefore, the aim of this study is to create a 3D FEM model for simulating the optimal 

selection and placement of implants. The primary focus of this work is to create and validate the model through 

an FEM study in order to calculate the stresses and strains that occur in the accessory carpal bone under 

maximum compression (force-to-failure) at different Young's moduli (E = 4 GPa – 30 GPa). The maximum 

strength was performed on accessory carpal bones of horses (n = 8) by experimental compression tests. A 3D 

FEM model was then created in COMSOL® Multiphysics using the Nonlinear Structural Materials Module. The 

morphology of the bone was obtained from CT scans. Boundary conditions were derived from the experimental 

uniaxial compression test. The results from the compression tests revealed averaged force-to-failure values of 

Fmean = 11.46 +/- 2.49 kN. The calculated stresses ranged from σ = 500 – 3000 MPa, depending on the Young’s 

modulus used. The simulated deformations behavior matched those obtained from the experimental compression 

tests. Thus, the comparison of the simulated deformations with those from the experimental tests helped narrow 

down the Young’s modulus range (E = 4 GPa – 6 GPa). The simple 3D FEM model developed in this study can 

be used for initial investigations to understand the etiology of the fracture and for the selection and placement of 

implants for stable fracture fixation of the accessory carpal bone. 
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Introduction 
The accessory carpal bone (ACB) is one of seven 

bones of the carpal joints of the horse. It has a 

discoid shape, the outer (lateral) surface is convex 

and the inner (medial) surface is concave. In the 

carpus of the horse, the ACB is connected with two 

muscles and several ligaments, although it has no 

weight-bearing function [1]. Fractures of the bone 

are rarely seen but mostly occur in racehorses and 

other equine athletes [2, 3]. The ACB is usually 

fracturing in a vertical plane [4, 5]. Less commonly, 

it is breaking horizontally [6]. Conservative 

treatment with bandaging and box rest is usually 

chosen, which can lead to bony non-union and 

severe callus formation. Therefore, surgical 

treatment is sought, which is technically difficult 

due to the shape of the bone [7]. Combined with the 

low incidence of the fracture, which is about 2% of 

all carpal bone fractures [8, 9, 10] the decision for 

treatment management is difficult [3]. By loading 

the bone under maximum compression (force-to-

failure), the authors aimed to demonstrate the 

maximum strength of the bone, which is important 

to ensure stable fracture fixation in the living horse. 

In addition, there has been no previous study in 

which the fracture was artificially induced by 

compression to determine whether the fracture 

behavior of the artificial compression fracture is 

comparable to the natural fracture of the horse. 

Therefore, the aim of this study is to create a 3D 

FEM model for simulating the optimal selection 

and placement of implants. The primary focus of 

this work is to create and validate the model 

through an FEM study in order to calculate the 

stresses and strains that occur in the ACB under 

maximum compression (force-to-failure) at 

different Young’s moduli. The paper is organized 

as follows: First, an overview of the main functions 

of bone tissue is given with their corresponding 

biomechanical properties as well as the associated 

material models. Next, the experimental procedure 

and the numerical model with the corresponding 

equations are explained. Then, the experimental and 

simulation results are presented. Finally, a 

discussion is derived followed by conclusion and 

outlook. 

Theory 
Bones are the essential prerequisite for higher 

organisms to have a defined shape. Combined with 

muscles and tendons, they enable locomotion and 

stability as well as other motor activities. In 

addition, they have a protective function. There are 

different types of bones: long, short, flat as well as 

irregular. Bones are strongly structured in order to 

be able to fulfill their various tasks optimally [11]. 

They must be able to absorb different forces, which 

can take the form of stretching, compression, 

bending, torsion or shearing, and must be adapted 
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accordingly to all these loads [12, 13]. The special 

properties of bones include: strong mineralization, 

high adaptability to loads (increased bone formation 

due to mechanical stimuli) and the ability to absorb 

and redirect forces at low weight [11, 13]. Due to 

the complex structure of bones, in particular 

because of the anisotropy of the mechanical 

properties as well as the influence of temperature, 

mineralization state, bone type, strain rate and time, 

there are a large number of different complex 

material models (linear elastic, transversely 

isotropic, poroelastic, viscoelastic) in the literature 

for describing bone behavior in response to 

different loading scenarios [14, 15, 16, 17]. With an 

increase in complexity, more and more parameters 

are required, which means an additional 

experimental effort. Biomechanical characterization 

of ACB was mainly performed using bone mineral 

density [18]. Therefore, the magnitudes of the 

biomechanical properties from the human domain 

will be used here. The Young’s modulus of human 

cortical bone varies between 6.91 GPa and 21 GPa 

(longitudinal direction) as well as 5 GPa and 

13 GPa (transverse direction). Poisson's ratio ranges 

from 0.12 to 0.58. Compressive strength ranges 

from 70 to 280 MPa (longitudinal direction) and 

about 50 MPa (transverse direction) [12, 14, 19, 

20].  

Experimental Set Up 
Eight ACB from slaughtered warmblood horses 

(age 13 – 18 years) were collected. Sex, race, and 

size of the horses were unknown. Visual inspection 

revealed no damage to the ACB. The ACB were 

then stripped of all soft tissue remains and stored at 

-24 °C. Twelve hours before examination, the ACB 

were thawed at room temperature. The shape (outer 

surface and top view) of the ACB is shown in 

Figure 1. 
 

 
Figure 1. Accessory carpal bone specimen: a.) outer 

surface view and b.) top view. 

The maximum strength (force-to-failure) of the 

ACB was determined by quasi-static uniaxial 

compression tests using a four-column testing 

machine. Special fixtures were designed for 

clamping the ACB, which were adapted to the top 

and bottom of the ACB (specimen holder). The 

following scheme was defined for the execution of 

the tests: 1. the specimens were preconditioned 

(five times compression loading up to F = 2 kN 

with a test velocity v1 = 100 N/s); 2. conducting the 

compressive tests until the specimens were 

damaged with a test velocity v2 = 1 mm/s. The 

experimental setup is shown in Figure 2.  
 

 
Figure 2. Experimental setup to determine the maximum 

strength (force-to-failure) of the accessory carpal bone. 

The obtained data were statistically analyzed using 

the boxplot. After the experiments, the damage to 

the ACB was determined visually. 

Numerical Model 
To calculate the stresses and strains in the ACB at 

maximum compression, a 3D FEM model was 

created in COMSOL® Multiphysics using the 

Structural Mechanics Module, the Nonlinear 

Structural Materials Module, and the CAD Import 

Module. The 3D spatial dimension, the Solid 

Mechanics (solid) physics interface, and the steady-

state study were selected as the modeling basis. The 

following steps were taken to build the 3D FEM 

model: Firstly, CT scans of the bone were taken. In 

step 2, CT scans were used to convert the ACB 

morphology into a step file (3D slicer®), which was 

then loaded into COMSOL Multiphysics (CAD 

Import Module). Subsequently, in step 3, the 

boundary conditions were defined according to the 

experimental uniaxial compression tests. Surfaces 

were defined for the bottom and top of the ACB, 

which corresponded to the dimensions from the 

specimen holder. A fixed constraint was defined for 

the ACB bottom and a boundary load (negative x-

direction) was defined for the ACB top. The 

boundary load corresponded to the force-to-failure 

(mean) from the experimental tests. Figure 3 shows 

the geometry of the ACB and the boundary 

conditions for the 3D FEM model. In step 4, a 

hyperelastic material model according to Neo-

Hookean (incompressible) was then selected to 

describe the material behavior of the bone. The 

material parameter Young’s modulus was varied 

(see Methods) and the material parameter Poisson's 

ratio was kept constant at ʋ = 0.4 [14]. The 5th step 

involved the creation of the FEM mesh. For this 

purpose, the sequence type physics-controlled mesh 

was selected with an extra fine element size 

(element type tetrahedra). The mesh fineness was 
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selected according to a mesh convergence study. 

The mesh consisted of 82168 elements.  
 

 
Figure 3. The 3D FEM model with the boundary 

conditions. 

Figure 4 shows the mesh and Figure 5 the mesh 

quality. The mesh quality with the quality 

description skewness (a measure of the equiangular 

skew) ranged from 0.213 to 0.969. The mean mesh 

quality was 0.660. 
 

 
Figure 4. The FEM mesh with extra fine element size. 

The last step was to define the solver settings. The 

PARDISO solver with default settings was used as 

direct solver. For the calculation, an auxiliary 

sweep was created with variation of the boundary 

load and the Young’s modulus (see Methods). 
 

 
Figure 5. The FEM mesh quality. 

The simulations were performed with the HP Z8 G4 

workstation (256 GB DDR4 memory, 2x Intel Xeon 

6244 3.6 2933 MHz CPU, NVIDIA Quadro RTX 

4000 8 GB). In a final step, the stress, strain, and 

displacement data were evaluated.  

Governing Equations 
The mathematical description of the 3D FEM 

model can be divided into two categories: Material 

model and boundary conditions. The Neo-Hookean 

incompressible hyperelastic material model was 

used to describe the ACB. An isotropic hyperelastic 

material is defined by its elastic strain energy 

density WS, which is a function of the elastic strain 

state. The hyperelastic formulation yields a 

nonlinear relationship between stress and strain. 

Strain energy density WS is described in equation 1: 
 

𝑊𝑆 =
1

2
𝜇(𝐼1̅ − 3). (Eq. 1) 

 

Here, µ is the Lamé parameter and 𝐼1̅ is the first 

invariant of the elastic right Cauchy–Green 

deformation tensor C. The conversion of the Lamé 

constant to Young’s modulus is shown in Equation 

2. 
 

𝜇 =
1

2
∙

1

1 + 𝜈
∙ 𝐸. (Eq. 2) 

 

Here, E is the Young’s modulus and 𝜈 the Poisson’s 

ratio [21, 22, 23]. After the strain energy density is 

defined, the second Piola-Kirchhoff stress is 

calculated as follows: 
 

𝑆 = 2
𝜕𝑊𝑆

𝜕𝐶
. (Eq. 3) 

 

For incompressible hyperelastic materials, the 

volumetric strain energy density Wvol is not defined 

at all, and the strain energy density WS only 

consists of the isochoric contribution and the 

incompressibility constraint (J = 1). Thus, the 

Cauchy stress tensor can be described by equation 4 

and the Green-Lagrange strain tensor by equation 5. 
 

𝜎 = 𝐽−1𝐹𝑆𝐹𝑇 (Eq. 4) 

  

𝜖 =
1

2
(𝐹𝑇𝐹 − 𝐼) (Eq. 5) 

 

Here, F is the deformation gradient, I is the 

invariant of the elastic right Cauchy–Green 

deformation tensor C and J is the volumetric 

deformation, which can be calculated using 

Equation 6 [22, 23]. 
 

𝐽 = 𝑑𝑒𝑡(𝐹) (Eq. 6) 
 

The boundary conditions were defined by using a 

boundary load and a fixed condition. The boundary 

load is defined in equations 7 and 8. 
 

𝐹𝐴 = 𝑆 ∙ 𝑛 (Eq. 7) 
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𝐹𝑡𝑜𝑡 = 𝐹𝐴𝐴 (Eq. 8) 
 

For Force per unit area (FA), the traction 

components are given explicitly (n is the positive 

normal direction). To calculate the total force (Ftot), 

Ftot is divided by the area A of the boundaries on 

which the load acts. Then the force is applied in the 

same way as for the force per unit area. The fixed 

constraint adds a condition that fixes the geometric 

element, i.e., the displacements are zero in all 

directions of the selected geometric elements. If 

there are rotational degrees of freedom, they are 

also equal to zero [24]. 

Methods (Numerical Study) 
For the characterization of the ACB under 

maximum strength (force-to-failure), two numerical 

studies were conducted. The first numerical study 

was performed as a function of Young’s modulus 

and boundary load to be able to calculate the 

stresses, strains, and displacements of the ACB. 

The Young’s modulus varied from E = 4 GPa to 

30 GPa in 2 GPa steps and the boundary load from 

F = 1 kN to 18 kN in 1 kN steps (an auxiliary 

sweep was performed). The second numerical study 

included the simulations with the minimum, 

maximum and average values of the experimental 

boundary loads. From the second numerical study, 

the simulated deformations were compared to the 

experimental deformations to narrow down the 

Young’s modulus range. 

Experimental Results 
The experimental results from the compression tests 

revealed averaged values for the force-to-failure of 

Fmean = 11.46 +/- 2.49 kN. The minimum and 

maximum values are Fmin = 9.12 GPa and 

Fmax = 14.50 GPa, respectively. Figure 6 shows the 

statistical distribution of the force-to-failure values 

of the ACB specimens tested.  
 

 
Figure 6. Statistical distribution of force-to-failure values 

of ACB specimens. 

Figure 7 shows the ACB specimen before and after 

the compression tests. Bone damage typically 

occurs in a vertical plane between half and two-

thirds of the ACB and in the area where the ACB is 

clamped in the testing machine.  

 
Figure 7. Accessory carpal bone specimen: a.) Before 

and b.) after compression test. 

Simulation Results 
The results from the first numerical study showed 

that the calculated maximum stresses ranged from 

σ = 500 to 3000 MPa and maximum strains ranged 

from ɛ = 0.001 to 0.4 depending on the Young's 

modulus and boundary load. Figures 8 and 9 show 

the calculated maximum stresses and strains as a 

function of Young’s modulus and boundary load. In 

addition, the experimental boundary loads 

(minimum and maximum) have been plotted in the 

figures.  
 

 
Figure 8. Calculated maximum stresses as a function of 

boundary load and Young’s modulus (red lines - 

minimum and maximum of experimental boundary load). 

 
Figure 9. Calculated maximum strains as a function of 

boundary load and Young’s modulus (red lines - 

minimum and maximum of experimental boundary load). 
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The second numerical study showed that the 

simulated deformation behavior complied well with 

the results obtained from the experimental 

compression tests. At a boundary load of 

Fmean = 11.46 kN, good compliance was found 

between simulated and experimental deformation 

behavior at a Young’s modulus of E = 5 GPa. After 

the analysis of the second numerical study, the 

Young’s modulus range can be narrowed down to 4 

and 6 GPa. Figure 10 shows the comparison 

between simulated and experimental deformation 

behavior. The analysis of the calculated stresses 

showed that the highest stresses occurred both in 

the bone fracture, typically in a vertical plane 

between half and two-thirds of the bone, and in the 

area where the bone was clamped in the testing 

machine. Figure 11 shows the stress analysis of the 

ACB after compression test. 
 

 
Figure 10. Comparison between simulated and 

experimental deformation behavior: a.) Experiment and 

b.) 3D FEM model (E = 5 GPa). 

 
Figure 11. Simulated stress distribution of the ACB under 

compression (E = 5 GPa). 

The calculated stresses in the fracture area are 

between σ = 150 MPa and σ = 250 MPa. The 

maximum stresses occurred at the specimen 

clamping. The results of the simulated stresses and 

strains from the second numerical study are 

presented in the appendix. 

Discussion 
The experimental compression tests on equine ACB 

resulted in fracture patterns similar to those of 

natural fracture behavior in horses [4, 5, 6]. The 

variability of the force-to-failure values obtained is 

within the typical range for the study of biological 

materials. However, the variance may be caused by 

limitation in the experimental setup, such as 

specimen movement during the compression tests 

as well as minor pre-damage of the specimens 

during preconditioning. Nevertheless, the obtained 

values can be used for the numerical study. The 

results of the numerical studies show that the stress 

and strain characteristics calculated with the simple 

3D FEM model strongly depend on the material 

properties (Young’s modulus) and load conditions. 

The bone deformations obtained from the 

experimental compression tests are consistent with 

the simulated deformation behaviors. Thus, 

comparison of the simulated deformations with 

those from the experimental tests helps to narrow 

down the range of Young’s modulus greatly from 

E = 30 GPa to a maximum of E = 6 GPa. These 

values comply well with typical Young’s modulus 

data from the literature [14, 19]. The obtained 

Young’s modulus range is only applicable to the 

simple 3D FEM model, since this is an isotropic 

model [15]. The stresses calculated from this 3D 

FEM model occur both in the region of 

experimental bone fracture, typically in a vertical 

plane between half and two-thirds of the bone, and 

in the region where the bone was fixed in the 

testing machine. The simulated maximum stress 

ranges comply very well with the maximum bone 

damage that occur in the ACB after the 

compression tests. After validation of the 3D FEM 

model, simple fracture characterizations (etiology 

of the fracture) and initial model calculations for 

the selection and placement of implants for stable 

fixation of fractures of the ACB can thus be 

performed. A detailed description of the fracture 

characteristics with different force vectors can only 

be performed to a limited extent with this 3D FEM 

model, since the anisotropy of the material 

properties of bone was not considered [14, 15]. 

Conclusions and Outlook 
There are several theories of the suspected etiology 

of the fracture of the ACB but until now the 

biomechanical development of it is not fully 

understood. The simple 3D FEM model developed 

in this study can be used for initial investigations 

into understanding the etiology of the fracture and 

for the selection and placement of implants for 

stable fracture fixation of the ACB. The Young’s 

modulus values determined here can be used as 

initial guide values for the simple simulation model. 

Future work will focus on improving the 3D FEM 

model. This includes determining the material 

properties of the bone (inverse FEM [25] or 

experimental) and employing more complex 
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material models. Likewise, fracture formation can 

be simulated, which is not considered in this 3D 

FEM model. 
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Appendix 
The following figures present the results of the 

second numerical study. Figures 12 to 17 show the 

stress and strain results for Fmin, Fmean and Fmax. 
 

 
Figure 12. Simulated stress distribution of the ACB under 

compression (Fmin = 9.12 kN, E = 5 GPa). 

 

 
Figure 13. Simulated strain distribution of the ACB under 

compression (Fmin = 9.12 kN, E = 5 GPa). 

 

 
Figure 14. Simulated stress distribution of the ACB under 

compression (Fmean = 11.46 kN, E = 5 GPa). 

 

 
Figure 15. Simulated strain distribution of the ACB under 

compression (Fmean = 11.46 kN, E = 5 GPa). 

 

 
Figure 16. Simulated stress distribution of the ACB under 

compression (Fmax = 14.50 kN, E = 5 GPa). 

 

 
Figure 17. Simulated strain distribution of the ACB under 

compression (Fmax = 14.50 kN, E = 5 GPa). 


