

Simulation-based Sensitivity Analysis Of The Direct Ammonia Fuel Cell Operating Conditions

Erno Kemppainen, Rutger Schlatmann, Sonya Calnan

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany

25.10.2023

Comsol conference, München

- 1. Direct ammonia fuel cell operation and model in general
- 2. Model details and validation
- 3. Sensitivity to operating conditions, importance of different loss

components

Direct Ammonia Fuel Cell and Model

Direct Ammonia Fuel Cell

- Fuel cell that uses ammonia directly as a fuel.
- Theoretical voltage at room temperature 1.17 V.
- Ammonia can be liquefied at a lower pressure than H_2 .
- Considered especially for heavy-duty transport.
 - No CO₂ emissions.
 - Slow kinetics of the ammonia oxidation reaction
 (AOR) at anode are the main voltage loss component

DAFC Comsol Model in General

Electrode Structures

Model Details and Validation

TELEGRAM

• ORR: Butler-Volmer with $\alpha_c = 1.5 \ [p_{ref} = 3 \text{ bar (absolute}^1); p^{0.5} \text{ based on}^2]$

$$j = j_0^* \sqrt{\frac{p}{p_{ref}}} \left(e^{\frac{\alpha_A q_e \eta}{k_B T}} - e^{-\frac{\alpha_C q_e \eta}{k_B T}} \right)$$

• AOR: Same reaction mechanism assumed as by Zhao et al.¹, i.e. non- B-V kinetics (RLS: 2 NH₂ \rightleftharpoons N₂H₄)

Reaction Potentials

- Temperature-dependent standard potentials, and thus cell voltage, based on NIST-JANAF thermochemical tables ³
- Nernst potentials for concentration/pressure effects

LEGRAM

Water Uptake and Ionomer Conductvity

• Water uptake (from Gerhard et al. ⁴)

 $\lambda = \left(-0.6a_{\text{w,ionomer}}^3 + 0.85a_{\text{w,ionomer}}^2 - 0.2a_{\text{w,ionomer}} + 0.153\right)(T - 313) + 39a_{\text{w,ionomer}}^3 - 47.7a_{\text{w,ionomer}}^2 + 23.4a_{\text{w,ionomer}} + 0.117$ $\lambda = \frac{c_{\text{w}} \cdot EW}{\rho_{\text{ionomer}}}$

• Ionic conductivity, basis ⁴

 $\kappa_{\text{OH}^-} = \frac{20}{100} \left(0.1334 - 0.0003882T + (0.01148T - 3.9)a_{\text{w,ionomer}} - (0.0669T - 23)a_{\text{w,ionomer}}^2 + (0.1227T - 42.61)a_{\text{w,ionomer}}^3 - (0.06T - 21.8)a_{\text{w,ionomer}}^4 \right)$

- S/cm, divided by 11.7 for AEM and by 7 for ionomer in catalyst layer to match Zhao et al.¹
- Bruggemann model for the volume fraction of the ionomer, also for other transport phenoma

 $\kappa_{\text{OH}^-,\text{eff}} = \varepsilon_{\text{ionomer}}^{1.5} \kappa_{\text{OH}^-}$

Zhao et al., ACS Energy Letters, 2021, 6, 1996-2002
 Gerhardt et al., J. Electrochem. Soc., 2019, 166, F3180 – F3192

Water Transport, Transport of Diluted Species

• Continuation equation and flux

 $\nabla \cdot \overrightarrow{j_{W}} = R_{W}; \overrightarrow{j_{W}} = -D_{W}\nabla c_{W} - z\mu F c_{W}\nabla V$

• Water diffusion coefficient ⁴

$$D_{\text{H}_2\text{O},b} = 2.07 \cdot 10^{-7} \, \frac{\text{cm}^2}{\text{s}} \exp(3.95 \, a_{\text{w,ionomer}}) \cdot \exp\left(\frac{17.7 \frac{\text{kJ}}{\text{mol}}}{R} \left(\frac{1}{333} - \frac{1}{T}\right)\right)$$

• Electro-osmotic drag, 1 H₂O per 1 OH⁻

$$\vec{j}_{w,drag} = -\frac{\vec{\iota}}{F} = -z_w \mu_W F c_W \nabla \varphi_l \rightarrow \mu_W = \frac{\kappa_O H^-}{F^2 c_W}; \nabla V = \nabla \varphi_l$$

• Ionomer – gas boundary

 $R_{\rm m,gas} = -K(a_{\rm w,ionomer} - a_{\rm w,gas}); a_{\rm w,gas} = RH = \frac{p_{\rm H_2}O}{p_{\rm W}}$

• AOR produces water ($R_W > 0$), ORR consumes it ($R_W < 0$)

4. Gerhardt et al., J. Electrochem. Soc., 2019, 166, F3180 – F3192

Gas Convection, Darcy's Law

Darcy's law and Carman-Kozeny

 $\vec{u} = -\frac{\kappa}{\mu} \nabla p$; $\kappa = \frac{\varepsilon_{\text{void}}^3 d^2}{16k_{\text{K}} (1 - \varepsilon_{\text{void}})^2}$

• Total pressure, Wexler's ⁵ formula for vapor equilibrium pressure

 $p_{\rm A} = p_{\rm dry} + \operatorname{RH} p_{\rm W}$;

 $p_{W} = \exp(-2.9912729 \cdot 10^{3} T^{-2} - 6.0170128 \cdot 10^{3} T^{-1} + 1.887643845 \cdot 10^{1} - 2.8354721 \cdot 10^{-2} T + 1.7838301 \cdot 10^{-5} T^{2} - 8.4150417 \cdot 10^{-10} T^{3} + 4.4412543 \cdot 10^{-13} T^{4} + 2.858487 \ln T)$

• Viscosity, Wilke's model ⁶, mass fraction x_i from Transport of Concentrated Species (next slide)

$$\mu = \sum_{j}^{n} \frac{x_{j}\mu_{j}}{\sum_{i}^{n} x_{i}\varphi_{ji}}; \varphi_{ji} = \frac{\left(1 + \sqrt{\frac{\mu_{j}}{\mu_{i}}} \left(\frac{M_{i}}{M_{j}}\right)^{1/4}\right)^{2}}{\sqrt{8\left(1 + \frac{M_{j}}{M_{i}}\right)}}$$

• Comsol's built-in model for viscosity coefficients (ideal gas), $\mu_j \approx \mu_j^* \left(\frac{T}{T^*}\right)^{0.76}$

Wexler, Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1976, 80A, 775
 Wilke, J. Chem. Phys., 1950, 18, 517-519

Molecule	Volume (∑ <i>i</i> 𝒴)
H ₂ O	13.1
NH ₃	20.7
02	16.3
N ₂	18.5

Zentrum Berlin

Maxwell-Stefan Diffusion, Transport of Concentrated Species

• Continuation equation, steady-state

 $\nabla\cdot \vec{j}_i + \rho(\vec{u}\cdot\nabla)\omega_i = R_i$

• Fluxes

$$j_i = -\rho \omega_i \Sigma_{k=1}^Q \tilde{D}_{ik} \vec{d}_k$$

- Driving force
 - $\vec{d}_k = \nabla x_k + \frac{1}{p_A} [(x_k \omega_k) \nabla p_A]$
 - x_k mass fraction , ω_k volume fraction
- Binary diffusion coefficient, Fuller-Schettler-Giddings ⁷

$$D_{\text{AB}} = \frac{1.01325 \cdot 10^{-2} T^{1.75} \sqrt{\frac{1}{M}\text{A}^{+} \frac{1}{M}\text{B}}}{p \left[\left(\Sigma_{\text{A}} v \right)^{1/3} + \left(\Sigma_{\text{B}} v \right)^{1/3} \right]^2}$$

- Pressure in Pa
- 7. Fuller, Schettler and Giddings, Ind. Eng. Chem., 1966, 58, 18-27

	*
TELF	GRAM

Validation of Gas-fed DAFC Model

- Transport model with Comsol multiphysics verified against simpler model from literature¹ that was verified against measurements
- Perfect match at all temperatures impossible due to different temperature dependencies of ionomer conductivity (¹ vs ⁴), for later simulations ionic conductivity optimized for best match at 75 °C

Zhao et al., ACS Energy Letters, 2021, 6, 1996-2002
 Gerhardt et al., J. Electrochem. Soc., 2019, 166, F3180 – F3192

TELEGRAM

Sensitivity Analysis and Physical Operation

Effect of the Parameters on Power Output

 Catalyst loading has almost no effect on CCM a)

- Generally, DAFC is more sensitive to the anode than to the cathode, especially with catalysts, except CCM & RH
- Pressure can be more useful than this comparison indicates

CCS

Losses at anode increase faster than at cathode

- Voltage losses vs current density at the baseline, the same general sensitivity pattern remains with other parameters
- Differences in anode vs cathode ionomer losses are due to different reaction kinetics, thus different spatial rate distribution

Anode ionomer losses are the most sensitive to temperature

- 75 mA/cm²; CCS was limited to lower currents at 50 °C
- Anode ionomer losses are the most sensitive loss component
- Below 75 °C DAFC even more sensitive to anode, above it ORR has a larger effect than AOR

Relative Humidity

- 75 mA/cm²
- Different sensitivities to anode and cathode RH are due to AOR, AEM and anode ionomer sensitivities
- CCM cathode is the thinnest ionomer & catalyst layer which is likely important for the increased sensitivity

Most of generated water exists from anode

- RH/water activity in DAFC at 90 mA/cm² (CCM: 0.25
 V, CCS: 0.19 V), profile matches literature, e.g.^{4,8}
- Maximum RH in anode, higher in CCS than in CCM
- Less water exits from cathode in CCS, which could partially explain the stronger effect of cathode RH on CCM
 - Thinner cathode CL in CCM helps back diffusion

Gerhardt et al., J. Electrochem. Soc., 2019, 166, F3180 – F3192
 Omasta et al., Energy Environ. Sci., 2018, 11, 551-558

 75 mA/cm^2

•

•

of catalyst activity

٠

٠

٠

Ionomer losses are increased, offset gains in kinetics at over ca. 2-3 mg/cm²

CCS is almost identical to the effect

volume/thickness increased,

Anode ionomer losses follow

constant layer thickness

kinetics but not cathode;

Increasing loading in CCM increases

Catalyst loading per

different kinetics

Catalyst Loading

Conclusions

- AOR and ORR kinetics are the biggest voltage loss components, must be reduced for high performance
- Anode losses are typically more sensitive than cathode; improving anode has a higher impact on DAFC performance
 - AOR is often the most sensitive loss component but not always
 - Anode ionomer losses magnify the effect of AOR kinetics (vs ORR kinetics), sometimes even the most sensitive component
 - Reaction mechanism and possible changes in Tafel slope affect electrode response to conditions, with different AOR and ORR kinetics the cathode could be more important than the anode
- As temperature and CCM & RH show, cathode properties could sometimes be more important than the anode properties

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 101006941. The project started on the 1st of November 2020 with a duration of 42 months.

Extra slides

- Voltage losses at the baseline scenario
- There are other minor losses, such as substrate electric resistance, but these are the 5 main components
- Comparisons for power at 0.25 V (dashed lines) or at 75 mA/cm² current density

25

Sensitivity analysis

- DAFC operating parameters varied by 20 % from baseline to determine the relative importance of different parameters
 - Power at 0.25 V (near the maximum power at baseline) used for the comparisons
- Comparison of voltage losses at selected current density (mostly 75 mA/cm²) to determine the reasons for observed sensitivities, and their differences

Baseline parameters and ranges

Parameter and unit	Model validation (earlier)	Baseline [and sensitivity analysis range]
T (°C)	60-95	75 [60 – 90]
Relative humidity	1	$0.75 \ [0.6 - 0.9]$
Anode catalyst loading (mg/cm ²)	4	4 [3.2-4.8]
Cathode catalyst loading (mg/cm ²)	3	4 [3.2-4.8]
Anode gauge pressure (bar)	0	1 [0.8 – 1.2]
Cathode gauge pressure (bar)	2	1 [0.8 – 1.2]
Ionomer volume fraction	0.85	$0.75 \ [0.6 - 0.9]$
Anode gas flow rate (ml/(min cm ²))	160	100 [80 - 120]
Cathode gas flow rate (ml/(min cm ²))	100	100 [80 - 120]
Anode NH ₃ fraction	0.5	0.5 [0.4 – 0.6]
Cathode O ₂ fraction	1	0.5 [0.4 – 0.6]

Catalyst activity

- 75 mA/cm²
- No significant differences CCM vs CCS
- Anode ionomer losses follow AOR kinetics!

- Pressure multiplication allows increasing power as much as increasing temperature or RH
- DAFC is more sensitive to anode pressure than to cathode pressure because pressure mainly affected kinetic overpotentials

30

- 75 mA/cm²
- No significant differences CCM vs CCS
- Only reaction kinetics are noticeably affected

HZB Helmholtz Zentrum Berlin

Gas composition

- Overall higher power with CCM, no other significant differences CCM vs CCS
- Ammonia more important than oxygen, larger effect on Nernst voltage (although slightly magnified by the use of N₂ as the inert gas component)

Concurrent change in all parameters

TELEGRAM

- Power density at 0.25 V
- No significant differences CCM vs CCS
- Higher power increase than separate 20 % changes indicate, and smaller decrease
- Gas transport limitation with too
 much ionomer

