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Abstract: This paper deals with the simulation 
study on the deformation of  drop-within-drop 
system in a high intensity oscillating electric field. 
It consists of a composite drop suspended    in a 
continuous phase. This composite drop has a 
smaller inner drop suspended within the larger 
outer drop.  For the sake of simplicity we consider 
the case where the inner drop and the continuous 
phase are made of the same liquid. The outer drop 
is made up of another immiscible liquid. The 
entire system is contained within a cylinder with 
insulating curved surface. A high intensity 
sinusoidally varying axial field is imposed on the 
system. In this paper, we have studied deformation 
of the individual drops and compared the 
deformation of the outer drop in the presence/ 
absence of the inner drop. The viscous effect 
slows down the response of the outer drop and 
hence it cannot regain its original spherical shape 
during the quarter cycle period of ebbing-field. 
Hence, with each cycle, the drop deformation 
continues to increase till steady state is reached. 
At high field intensities, the deformation becomes 
boundless. Although, the outer drop shows the 
same steady deformation in the presence and in 
the absence of the inner drop, the presence of the 
inner drop slows down the response of the outer 
drop.   
This study is very important in understanding the 
stability of liquid-liquid interface for designing the 
liquid emulsion membranes. 
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1. Introduction 
Double emulsions are formed by dispersing an 
emulsion in another immiscible liquid phase. 
Examples are: Water-oil-water (W/O/W), oil-
water-oil (O/W/O) or oil-oil-oil (O’/O/O’) 
emulsions. Double emulsions have tremendous 
potential applications in various fields particularly 
in metal extraction, drug delivery, cosmetics, 
agriculture, food, photography, leather etc [1-3]. 

In Liquid Emulsion Membrane (LEM) 
extraction technique, a valuable solute at very low 
concentrations in external continuous phase is 
extracted into the internal strip-phase. The two 
phases are separated by the middle membrane 
phase. This process has wide applications in the 
separation and recovery of organic solutes, 
minerals and toxic materials like phenols, uranium 
and cadmium, etc. from effluents and also in 
waste-water treatment [4-8]. 

 Application of LEM technology to industrial 
scale is, however, hindered by the challenges in 
achieving stability of the double emulsion during 
the extraction. Swelling of the emulsion, rupture 
of the membrane and the leakage of internal phase 
into the external phase are the associated 
problems. They are all caused by deformation of 
the interfaces. The shear stresses aggravate these 
problems. So it is essential to study the effect of 
shear on the overall stability of double emulsions.  

It is observed that when an electric field 
(AC/DC) is applied to a liquid drop which is 
suspended in another immiscible liquid, it 
undergoes deformation due to 
electrohydrodynamic stresses at the interface. If 
the intensity of the applied electric field is below 
the critical value and it is oscillating then the drop 
elongates and contracts. The frequency of 
elongation and contraction is equal to double the 
frequency of the applied electric field with some 
phase lag. The restoring force is interfacial tension 
which balances this electric force which causes 
regaining of spherical shape of drop. This drop 
elongation and relaxation causes the fluids to flow 
in and around the drop. This velocity field gives 
rise to a shear field around the internal droplets. 
Hence applying oscillating electric field it is 
possible to study shear induced instability. Lot of 
experimental and theoretical studies[9-12] have 
been done on drop deformation under electric field 
which is useful for understanding the stability of 
single emulsion under shear. The deformation of 
double emulsion globule has been experimentally 
studied by Ha et al.(1999) [13, 14]. However, no 
simulation studies have been conducted so far.  

 1

Excerpt from the Proceedings of the COMSOL Conference 2010 India

http://www.comsol.com/conf_cd_2011_in


In this paper we have simulated the 
deformation of a drop-within-drop system in a 
high intensity oscillating electric field. The system 
consists of a composite drop suspended    in a 
continuous phase. This composite drop consists of 
a smaller inner drop suspended within the larger 
outer drop. This study is the first step towards 
understanding the deformation of a double 
emulsion globule.   
 
2. Physical Model and Mathematical 
Formulations 
 
2.1 Problem Description 

 
Figure 1: Schematic representation of drop within 
drop system. 
 

Fig 1 shows our physical model for the study 
of deformation of drop within drop system. In this 
system, the fluid-1 (density ρ1, viscosity µ1, 
electrical conductivity κ1 and permittivity ε1) and 
fluid-2 (density ρ2, viscosity µ2, electrical 
conductivity κ2 and permittivity ε2) are 
immiscible. The drop assembly is placed at the 
centre of cylindrical vessel which contains a 
continuous phase of fluid-1. The metal electrodes 
are fixed at the top and bottom surfaces of the 
vessel for applying high intensity oscillating 
electric field along the axis of the cylinder. The 
curved wall of the cylinder is insulating.  
 
2.2 Problem Formulation 

The problem is cast in 2D axisymmetric case 
as illustrated in Figure-2. The outer drop BCJB is 
contained within a cylindrical domain DEFAD. 
The inner drop GHIG is inside the outer drop.  For 

the purpose of simulation, we consider three sub-
domains. Subdomain 1: external continuous phase 
(DEFAD), subdomain 2: outer drop (BCJB) and 
subdomain-3, internal drop (GHIG). The radius of 
the cylinder and its height are respectively 5 mm 
and 10 mm. The outer drop radius is 2 mm and the 
inner drop radius is 1.5 mm. 

  
 

 
 
 
Figure 2: Schematic representation of the axisymmetric 
model of drop-within-drop system under oscillating 
Electric Field. 
 
The circular end surfaces AF and DE are the 
electrodes having respective sinusoidal potentials 

 and such that+V −V ( ) ( )V tsinV ω021=+
 and 

+− −= VV . The densities of the fluids are assumed 
to be equal so that the effect of gravity can be 
neglected. The value of the interfacial tension, σ, 
is chosen as 5 mN.m-1. The viscosity ratio 
M=μ2/μ1 is chosen as unity. The conductivity ratio 
R=κ2/κ1 of 37.5 and the ratio of dielectric 
constants Q=ε2/ε1 of 0.1 are used.  Two different 
values of V  are chosen for the simulation, viz. 
800 V and 1000 V. The frequency of oscillation is 
maintained at 1 Hz.  

0
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2.2 Governing Equations for the Flow 
 
The fluid velocity is obtained by solving the 
equations of continuity and motion. These can be 
expressed as follows.  
 

0=⋅∇ iv     i = 1, 2, 3                                (1) 
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where, = velocity of fluid in the domain i , is 

the pressure, G  is the Gibbs free energy of the 
system, 

iv ip

φ  is the phase field function to track the 

interface deformation and Ef  is the electrical 
force per unit volume due to Maxwell stress tensor 

Eτ  and is given by  
 

      EEf τ⋅∇=                                              (3) 
 
The dynamics of the interface deformation due to 
stresses can be solved numerically by using Cahn- 
Hilliard diffusion equation. In COMSOL 
Multiphysics, the Cahn-Hilliard diffusion equation 
is split into two parts for numerical convenience are 
given by Eq. 4 and by Eq. 5 
 

( ) ψδαβφφ
∇⋅∇=∇⋅+

∂
∂ 2v

t
   (4) 

 
( )122 −+∇⋅−∇= φφφδψ      (5) 

 
φ  is the dimensionless phase field variable, α  is 
the mobility, β  is the energy density and 
δ scales the interface thickness. In the above Eq. 
4, the interfacial tension value is incorporated 
through the energy density β  and interface 
thickness δ  by following expression. 
 

δ
βσ ⋅=

3
22

        (6) 

In this system, we have two immiscible fluids; the 
phase field function distributes its value as a +1 
for bulk fluid-1, -1 for the bulk fluid-2 and zero at 
the interface.  

2.2 Governing Equation for Electric Field 
 
In subdomains 1, 2 and 3 we used Maridional 
Electric current equation to describe the potential 
distribution and the current density distribution in 
the system. The total charge conservation in the 
system is given by  
      

 j
t
C

⋅∇−=
∂
∂

                                        (7) 

 
C is the volume charge density in the bulk fluids  
and j is the flow of current density  in the system 
due to free ions in the bulk fluids. The current 
density in the system is given by Eq 8 
 

Vj r∇−= κ                                                   (8) 
 
The rκ  is the relative conductivity in the system. 
It is expressed in terms of volume fractions of 
each phase in the system multiplied by their 
corresponding conductivity value. 
 

2211 VfVfr ×+×= κκκ      (10) 
 
The  is the volume fraction of fluid 1 in the 

system and is equal to 
1Vf

( ) 21 φ+ , similarly the 

 is the volume fraction of fluid 2 in the system 

and is equal to
2Vf

( ) 21 φ− . 
 
The charge distribution in the system is given by 
Poisson Equation 
 

( )
0ε

ε CVr −=∇⋅∇                                     (11) 

 

rε  is the effective  dielectric constant in the 
system and is defined as  
 

2211 VfVfr ×+×= εεε      (12) 
 
 0ε  is the relative permittivity of the free space.  
The leaky dielectric theory was incorporated in 
our problem formulation by using a governing 
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equation of Maridional Electric current in 
COMSOL Multiphysics which is given by Eq 13. 
 

( ) ( VV
t rr ∇⋅∇=∇
∂
∂

⋅∇ κεε 0 )               (13) 

    
The Maxwell stress tensor is given by  
 

( ) ⎥⎦
⎤

⎢⎣
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                                                   (14) 

 and the electric force per unit volume is given by 
 

     i,mi,Ef τ⋅∇=                                             (15) 
 
Initial Conditions: 
 
At time  0=t
The fluid velocity  0=iv
The potential at electrodes  0=V
 
Boundary conditions 
 
Fluid Flow: 
 
On the boundaries AF, FE, ED: The velocity of 
fluid is zero, ( ) since they are walls.  0=iv
The boundary ABGHCD is the axis of symmetry,  
 
The stress continuity is applied at both the 
interfaces, BJC and GIH: 
 

( )( ) ( )( )( ) 022221111 =−∇+∇−−∇+∇⋅ IpvvIpvvn TT μμ
             (16) 
Electric potential  

At AF: )tsin(
V

V ω
2

0−=       (17) 

At ED: )tsin(
V

V ω
2
0=        (18) 

At   FE: Electrical insulation   0=⋅ jn  
 
At   BJC and GIH: The Gauss Law  
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The charge balance equation  
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 The above two boundary condition equations are 
incorporated in the governing equation. Here, we 
are not imposing explicitly any boundary 
conditions at the interface.                    
 
3. Results and Discussions 
 

 
 
Figure 3. Simulated velocity field  at t= 0.96 s.  
                 10000 =V V.   

 
                

Figure 4. Simulated electric field at t= 0.96 s.  
                 10000 =V V.   
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igure 5a Deformation of the drops in electric 

ws the 

eformation is defined as  

electric field respectively, at one instant of time. 
Two vortices are seen in Figure-3. They are 
generated by tangential components of the 
Maxwell stresses. The highest stress exits at the 
poles of the deformed drop and hence the fluid 
velocity is also highest at these points. Also the 
electric field is highest at the poles due to the 
induction effect.  It is also seen that the electric 
field is constant inside the inner drop. Since the 
conductivity of the inner drop is much lower than 
the outer drop,  no current flows through the inner 
drop and hence it acts as a dielectric sphere.  
        

igure 5 shows deformation D of drops as a F
unf ction of time, in the presence d the absence 

of the inner drop. Figure 5a corresponds to the 
amplitude of potential of 

an

8000 =V V. and Figure 
5b corresponds to the am f potential of plitude o

10000 =V V.

 

 
 
 
F
field.  8000 =V  V. Green line shows the deformation 
of the outer drop in the absence of the inner drop. Red 
line sho deformation of the outer drop in the 
presence  of the inner drop and the Black line represents 
the deformation of the inner drop.  
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Where  and L B  is the lengths of the major and 
minor axes of the deformed drop, respectively,    
 

 
 
 
Figure 5b Deformation of the drops in electric 
field. 10000 =V V. Green line shows the 
deformation of the outer drop in the absence of the inner 
drop. Red line shows the deformation of the outer drop 
in the presence  of the inner drop and the Black line 
represents the deformation of the inner drop.  
 
 
                             
 It is seen from these figures that deformation 
oscillates with the field. However, the deformed 
drop is not restored to its original shape when the 
field becomes zero. Some residual deformation is 
retained. As a result, its deformation increases 
with every cycle, till a steady oscillatory 
deformation is attained. In the absence of the inner 
drop, the steady state is regained faster than in the 
presence of the inner drop.  The reason is that the 
inner drop produces a retardation effect on the 
deformation of the outer drop due to phase lag 
between its own deformation and that of the outer 
drop. This phase lag is caused by the difference in 
the conductivities of the two drops.  
 
 At higher fields, the deformation becomes 
unbounded as seen in Figure 5 b.  It is important to 
note that this transition occurs over a narrow range 
of the electric field.  
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      The deformation of the inner drop is 
significantly lower than that of the outer drop.  
The reason is, the outer drop acts as an electric 
shield, thereby reducing the filed intensity in the 
vicinity of the inner drop. The shield effect 
progressively reduces as the field intensity 
increases. Thus, at high field strengths the 
deformation of the inner drop is substantial as 
shown in Figure 5b .  
 
 
5. Conclusions  
 
 From these studies, we find that the 
deformation of the composite drop in 
oscillating electric field is governed by a 
variety of factors. The inner drop retards the 
deformation of the outer drop and hence 
delays the attainment of the steady state. On 
the other hand, the outer drop acts as an 
electric shield and reduces the deformation of 
the inner drop. The shielding effect 
diminishes as the field intensity is increased.  
 Note that these results are valid only for 
the chosen fluid properties and do not cover 
the entire range of the fluid properties.  
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