

Open-Minded

Excimer Laser-Annealing of Amorphous Silicon Layers

J. Förster and H. Vogt

Institute of Electronic Components and Circuits, University Duisburg-Essen, Germany

- Modern TFT-Displays and modern MEMS are often based on amorphous silicon
- Almost always temperature-sensitive substrates are used
- Annealing of amorphous semiconductors on temperature-sensitive substrates or CMOS structures is challenging
- Classic annealing techniques (e. g. furnace or IR radiation) require high temperatures
- Substrates or CMOS structures will be damaged
- Need for an annealing technique with very low thermal stress for underlying substrates
- Known solution: (Excimer-)Laser- Annealing

How does Excimer-Laser-Annealing (ELA) work?

- Samples are irradiated with a laser
- Laser irradiation is absorbed in the samples and transformed into heat
- Short absorption length for UV light allows extreme short and near-surface heating
- Reduced risk of damaging the substrates
- Determination of temperature inside the samples is hardly possible
- Model of ELA gives detailed information on temperature distribution in the samples
- Model prevents from time-consuming and expensive ELA tests

Model Geometry

Open-Minded

Geometry of experimental samples

Geometry of model

- Pulsed KrF-Laser is homogeneous distributed (5 mm x 5 mm)
- Lateral dimensions are greater than vertical ones by orders of magnitude
- Reduction of ELA to an one-dimensional problem of heat-transfer

Open-Minded

Physic module used: Heat Transfer in Solids (ht)

- Time-dependent study (time steps t_{step} = 100 ps)
- Modelling phase change by adding latent heat L_m to C_p(T)
- Verification of model by comparing calculated values with experimental ones

Parameter	Simulation	Experiment	Verification	Theoretical Prediction
melt duration			((
melt threshold	⊘	⊘	⊘	⊘
onset time to melt	⊘	⊘	⊘	⊘
melt depth	⊘	⊘	⊘	⊘
thermal stress	✓			

Melt Duration

Open-Minded

Results:

- Linear increase of T_m with E_□
- Obvious melt threshold E_{th}
- Behaviour as expected!

Verification:

- Calculated values and experimental ones are in good agreement
- Especially values for E_{th}
- Calculated values are reliable!

Melt Threshold

Open-Minded

Results & Verification:

- As seen before E_{th} is temperaturedependent
- Linear decrease of E_{th} with rising T
- Calculated values and experimental ones are in excellent agreement
- Behaviour as expected!
- Calculated values are reliable!

Results:

- Decrease of t_{OTTM} with increasing E_□
- t_{OTTM} levels to a value of a few nanosenconds with great values of E_□
- Behaviour as expected!

Verification:

- Calculated values and experimental ones are in good agreement
- Calculated values are reliable!

Melt Depth

Open-Minded

Results:

- Linear increase of I_m with E_m
- Behaviour as expected!

Verification:

- Constant offset of 40 nm between calculated values and measured ones
- Offset is most probably due to a systematic error
- Systematic error due to "Explosive Crystallisation" (cannot be included into the model)

Thermal Stress (time-dependent)

Thermal Stress (energy-dependent)

UNIVERSITÄT
DUISBURG
ESSEN

Conclusion

- Design of an one-dimensional model of ELA of a-Si layers in COMSOL Multiphysics
- Implementation of temperature-dependent values for specific heat C_p(T),
 thermal conductivity k(T), surface reflectivity R(T) of a-Si
- Implementation of phase change by introducing latent heat L_m of a-Si
- Model successfully validated by comparison of calculated values with experimental ones
- Model gives valuable insights on sample temperature and reliable predictions on thermal stress of substrates
- Therefore, model prevents from time-consuming and very expensive ELA test
- Model reduces time to first successfully produced prototype

Thank you for your attention!

Interested?
Please visit me at my poster (No. 25) for more details!