The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


DC Characteristics of a MOS Transistor (MOSFET)

This model calculates the DC characteristics of a simple MOSFET. The drain current versus gate voltage characteristics are first computed in order to determine the threshold voltage for the device. Then the drain current vs drain voltage characteristics are computed for several gate voltages. The linear and saturation regions for the device can be identified from these plots.

InGaN/AlGaN Double Heterostructure LED

This model simulates a GaN based light emitting diode device. The emission intensity, spectrum, and efficiency are calculated as a function of the driving current. Direct radiative recombination across the bandgap is modeled, as well as non-radiative Auger and Trap-Assisted Scattering processes. This results in a sub-linear increase in emission intensity with increasing current, which is a ...

PN-Junction 1D

This simple benchmark model computes the potential and carrier concentrations for a one-dimensional p-n junction using both the finite element and finite volume methods. The results are compared with an equivalent device from the book, "Semiconductor Devices: A Simulation Approach," by Kramer and Hitchon.

3D Analysis of a Bipolar Transistor

This model shows how to set up a 3D simulation of a n-p-n bipolar transistor. It is a 3D version of the device shown in the Bipolar Transistor model, and demonstrates how to extend semiconductor modeling into 3D using COMSOL Multiphysics. As in the 2D version of this model, the device is simulated whilst operating in the common-emitter regime. A voltage driven study is computed to characterize ...

GaAs PIN Photodiode

This simple model demonstrates how to use the Semiconductor Optoelectronics interfaces to model a simple GaAs PIN diode structure. Both the stimulated and spontaneous emission in the semiconductor are accounted for. The corresponding adsorption of the light and the associated change in the complex refractive index are included in a self consistent manner.

PN-Diode Circuit

This model extracts spice parameters for a silicon p-n junction diode. The spice parameters are used to create a lumped-element equivalent circuit model of a half-wave rectifier that is compared to a full device level simulation. In this example, a device model is made by connecting a 2D meshed p-n junction diode to a circuit containing a sinusoidal source, a resistor and a ground to form a ...

GaAs p-n Junction Infrared LED Diode

This model simulates an LED that emits in the infrared part of the electromagnetic spectrum. The device structure is made up of a single p-n junction formed by a layer of p-type doping near the top surface of an otherwise n-type wafer. This kind of device geometry is simple and cheap to produce and similar LEDs are found in many household applications, e.g. the IR emitters in TV remote ...

Thermal Analysis of a Bipolar Transistor

This model demonstrates how to couple the Semiconductor interface to the Heat Transfer in Solids interface. A thermal analysis is performed on the existing bipolar transistor model in the case when the device is operated in the active-forward configuration. The Semiconductor interface calculates the carrier dynamics and currents within the device and outputs a heating term due to electrical ...

Bipolar Transistor

This model shows how to set up a simple Bipolar Transistor model. The output current-voltage characteristics in the common-emitter configuration are computed and the common-emitter current gain is determined.

Wavelength Tunable LED

This application computes the emission properties of a AlGaN/InGaN LED. The emission intensity, spectrum, and efficiency are calculated for an applied voltage or as a function of voltage over a selected range. The indium composition in the light-emitting InGaN region can be varied in order to control the emission wavelength. When the emission occurs within the visible spectrum the corresponding ...

1 - 10 of 20 First | < Previous | Next > | Last