Quick Search

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Ion Funnel

An electrodynamic ion funnel provides an efficient means of transferring ions from regions of high pressure to high vacuum. The ion funnel can couple devices which generally operate at pressures of different orders of magnitude, such as ion mobility spectrometers and mass spectrometers, allowing mixtures of ionized gases to be separated and analyzed while minimizing losses. This model ...

Busbar, AC Analysis

This is a busbar configuration with an AC analysis. The configuration is similar to the introductory tutorial in the book Introduction to COMSOL Multiphysics. However, two conductors are added to represent a more realistic case of magnetic fields surrounding the busbar. The results include Lorentz forces, induced currents, magnetic flux, and temperature.

Caughey-Thomas Mobility

With an increase in the parallel component of the applied field, carriers can gain energies above the ambient thermal energy and be able to transfer energy gained by the field to the lattice by optical phonon emission. The latter effect leads to a saturation of the carriers mobility. The Caughey Thomas mobility model adds high field velocity scattering to an existing mobility model (or to a ...

Fast Numerical Modeling of a Conical Horn Lens Antenna

An axisymmetric 3D structure such as a conical horn antenna can be simulated in a fast and efficient way using only its 2D layout. In this model, the antenna radiation and matching characteristics are computed very quickly with respect to the dominant TE mode from the given circular waveguide by simulating the 2D axisymmetric geometry of an 3D antenna structure.

Isolator Thickness Effect

The use of Aluminum (Al) isolator is a commonly employed mitigation strategy for galvanic corrosion between magnesium alloy (Mg) and mild steel (MS). The present model demonstrates the effect of Al isolator thickness on galvanic corrosion severity using a parametric study. The electrode kinetics is implemented here using the experimental polarization data available in literature.

Designing a Waveguide Diplexer for the 5G Mobile Network

A diplexer is a device that combines or splits signals into two different frequency bands, widely used in mobile communication systems. This model simulates splitting properties using a simplified 2D geometry. The computed S-parameters and electric fields at the lower and upper bands will show the diplexer characteristics in the Ka-band.

1D Isothermal Nickel-Metal Hydride Battery

This model simulates the discharge of a Nickel-Metal Hydride (NiMH) battery using the Battery with Binary Electrolyte interface. The geometry is in one dimension and the model is isothermal. The model serves as an introduction to NiMH modeling, and can be further extended to include various side reactions.

Electrical Heating in a Busbar

This tutorial model of the Joule heating effect in a busbar demonstrates how to synchronize an assembly between Inventor and COMSOL, how to modify the geometry from COMSOL, and how to run a geometric parametric sweep.

Capacitively Coupled Plasma

This application provides insight into the instantaneous and periodic steady state solutions of a 1D capacitively coupled plasma. The geometry, pressure and applied voltage are all inputs, as is the frequency and number of RF cycles over which to solve. Aside from instantaneous and time averaged plots, global quantities for the power deposition and current are computed.

Magnetic Stiffness of an Axial Magnetic Bearing in 3D

The model illustrate the technique to calculate the magnetic stiffness in a 3D geometry of a permanent magnet axial magnetic bearing. The *Magnetic Fields* physics is used to model the bearing and compute the magnetic forces. The *Deformed Geometry* and *Sensitivity* physics are used to compute the magnetic stiffness.