The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


1D Lithium-Ion Battery Model for Power vs Energy Evaluation

A battery’s possible energy and power outputs are crucial to consider when deciding in which type of device it can be used. A cell with high rate capability is able to generate a considerable amount of power, that is, it suffers from little polarization (voltage loss) even at high current loads. In contrast, a low rate-capability cell has the opposite behavior. The former type is often denoted ...

Radome with Double-layered Dielectric Lens

A radome minimizes losses and improves radiation characteristics of an antenna through its design. The structure can be optimized to minimize the transmission loss and also designed to improve radiation characteristics including antenna directivity and side lobes. Shown in the model is the surface current density on the patch antenna, the magnitude of the electric potential on the antenna's ...

Combining Creep Material Models

This model illustrates how to combine together different Creep material models. Here a Norton-Bailey creep material (primary creep) is combined with a Norton creep material model (secondary creep). This model is a modification of the Model Library model Thermally Induced Creep.

Quadrupole Mass Filter

A quadrupole mass filter (QMF) is a key component of a modern mass spectrometer. A QMF uses direct current (DC) and alternating current (AC) electric fields to analyze positive or negative ions by mass to charge ratio. A QMF consists of 4 parallel rods spaced equidistantly, the ratio of the rod radius to the radius of the inscribed circle is 1.148. Opposite pairs of rods are electrically ...

Determining the Reaction Order from Pressure-Time Data

This model shows how to use the Parameter Estimation feature in the Reaction Engineering interface to find the rate constant and reaction order for the gas phase decomposition of di-tert-butyl-peroxide.

Ion Funnel

An electrodynamic ion funnel provides an efficient means of transferring ions from regions of high pressure to high vacuum. The ion funnel can couple devices which generally operate at pressures of different orders of magnitude, such as ion mobility spectrometers and mass spectrometers, allowing mixtures of ionized gases to be separated and analyzed while minimizing losses. This model ...

Lorenz Attractor

A Lorenz attractor can be described by a system of ordinary differential equations: the Lorenz system. In the early 1960s, Lorenz discovered the chaotic behavior of this system for certain parameter values and initial conditions. The solution, when plotted as a phase space, resembles the figure eight. This example uses the Dormand-Prince explicit method for solving the ODEs and a Point ...

Degradation of DNA in Plasma

Biotechnology is a rapidly growing area in the pharmaceutical sciences. One example of a clinical application is gene therapy, where it is possible to produce proteins in vivo, using the body’s own mechanisms for protein production. Major issues in gene delivery involve the transport of plasmid DNA (pDNA) to target sites and the conversion between different forms of pDNA. This example ...

Gravitational Lensing

This model demonstrates how the sun causes 1.75 arcseconds of deflection for rays grazing the sun's surface as observed from the earth. Einstein predicted this value after refining his theory of relativity during World War I.

Heterogeneous Lithium-Ion Battery Model

This model describes the behavior of a lithium-ion battery unit cell modeled using an idealized three-dimensional geometry. The geometry mimics the structural details in the porous electrodes. Such models are referred to as heterogeneous models. The modeling approach for heterogeneous models differs from typical battery models, such as the Newman model. In homogeneous models, averaged ...