The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

Optimization of a Catalytic Microreactor

In this application, a solution is pumped through a catalytic bed where a solute species reacts as it gets in contact with the catalyst. The purpose of this example is to maximize the total reaction rate for a given total pressure difference across the bed by finding an optimal catalyst distribution. The distribution of the porous catalyst determines the total reaction rate in the bed. A large ...

Finding Kinetic Arrhenius Parameters Using Parameter Estimation

This example shows how to use the Parameter Estimation and Experiment features in the Reaction Engineering interface for optimization with multiple experimental data input files. The application finds the Arrhenius parameters of a first order reaction where Benzene diazonium chloride decomposes to benzene chloride and nitrogen at 313, 319, 323, 328, and 333 K.

Beam Subjected to Traveling Load

As an example of how to build an app using the Application Builder, this application simulates the transient response of a beam, or bridge, that is placed on several equidistant supports and is subjected to a traveling load. The purpose of the Beam Subjected to Traveling Load app is to analyze the structural response of a bridge when vehicles pass over it. Many of the bridge's parameters can be ...

Terzaghi Compaction

Fluids that move through pore spaces in an aquifer or reservoir can shield the porous medium from stress because they bear part of the load from, for instance, overlying rocks, sediments, fluids, and buildings. Withdrawing fluids from the pore space increases the stress the solids bear, sometimes to the degree that the reservoir measurably compacts. The reduction in the pore space loops back and ...

Molecular Flow Through an S-Bend

This model computes the transmission probability through an s-bend geometry using both the angular coefficient method available in the Free Molecular Flow interface and a Monte Carlo method using the Mathematical Particle Tracing interface. The computed transmission probability by the two methods is in excellent agreement with less than a 1% difference. This model requires the Particle Tracing ...

Rat-Race Coupler

A 180° Ring Hybrid (Rat-Race Coupler) is a four-port network with 180° phase difference between two ports. It is cheaper to manufacture this type of microstrip line component compared to a wave guide 180° hybrid junction, so called magic-T. The objective of this model is to compute the S-parameters and to observe the matching, isolation, and coupling around the operating frequency.

Electric Shielding Comparison

The electric shielding boundary condition is meant to approximate a thin layer of highly conductive material that provides an additional current path tangential to a boundary. This example compares the electric shielding boundary condition to a full-fidelity model and discusses the range of applicability of this boundary condition.

Thin Low Permittivity Gap Comparison

The thin low permittivity gap boundary condition is meant to approximate a thin layer of material with low relative permittivity compared to its surroundings. This boundary condition is available for electrostatic field modeling. This example compares the thin low permittivity gap boundary condition to a full-fidelity model and discusses the range of applicability of this boundary condition.

Linear Magnetic Gear

In this model, a linear magnetic gear system with a gear ratio of 11:4 is modeled. The liner magnetic gear is assumed to be infinitely long with the modular structure that is repeating on either side. Only a single modular section is modeled by using the customized linear periodic boundary condition. Both the low speed and the high speed armatures (rotors) consist of permanent magnets and back ...

Dynamics of Helical Gears

This model illustrates the dynamics of helical gears. It is built using the gears functionality in the Multibody Dynamics interface in COMSOL Multiphysics. A transient study is performed to analyze the effect of constant gear mesh stiffness, varying gear mesh stiffness, and the transmission error on the angular velocity of driven gear and the contact force. An eigenfrequency analysis is ...