The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Sonic Crystal

Phononic and sonic crystals have generated rising scientific interest for very diverse technological applications. These crystals are made of periodic distributions of scatterers embedded in a matrix. Under certain conditions, acoustic band gaps can form. These are spectral bands where propagation of waves is forbidden. This model first analyzes as sonic crystal and determines its band ...

Free Convection in a Light Bulb

This model treats the free convection of argon gas within a light bulb. It shows the coupling of heat transport (conduction, radiation and convection) to momentum transport (non-isothermal flow) induced by density variations caused by temperature. COMSOL Multiphysics model makes it possible to determine the temperature distribution on the outer surface of the bulb, as well as the temperature ...

Heating Circuit

Small heating circuits find use in many applications. For example, in manufacturing processes, they heat up reactive fluids. The device in this tutorial example consists of an electrically resistive layer deposited on a glass plate. The layer results in Joule heating when a voltage is applied to the circuit, which results in a structural deformation. The layer’s properties determine the amount ...

Fluid-Structure Interaction in a Network of Blood Vessels

This model refers to a portion of the vascular system of a young child - the upper part of the aorta artery. The blood vessels are embedded in a biological tissue (the cardiac muscle) and, during the flow of blood, pressure is applied to the internal surfaces producing deformation of the vessel walls. The complete analysis consists of two distinct but coupled procedures: a fluid-dynamics ...

Axisymmetric Transient Heat Transfer

This is a benchmark model for an axisymmetric transient thermal analysis. The temperature on the boundaries changes from 0 degrees C to 1000 degrees C at the start of the simulation. The temperature at 190 s from the anlysis is compared with a NAFEMS benchmark solution.

Loudspeaker Driver

This example shows you how to model a loudspeaker of the dynamic cone driver type, common for low and medium frequencies. The model analysis includes the total electric impedance and the on-axis sound pressure level at a nominal driving voltage, as functions of the frequency. The spatial characteristics of the speaker are depicted in a directivity plot. The tutorial model is set up using a ...

Convection Cooling of Circuit Boards - 3D Natural Convection

The suite of models examine the air cooling of circuit boards populated with multiple integrated circuits (ICs), which act as heat sources. Two possible cooling scenarios are depicted: vertically aligned boards using natural convection, and horizontal boards with forced convection (fan cooling). In this case, contributions caused by the induced (forced) flow of air dominate the cooling. To ...

Pore-Scale Flow

This non-conventional model of porous media flow utilizes creeping (Stokes) flow in the interstices of a porous media. The model comes from the pore-scale flow experiments conducted by Arturo Keller, Maria Auset, and Sanya Sirivithayapakorn of the University of California, Santa Barbara. The geometry used in the model was produced by scanning electron microscope images. In this example, we take ...

Loaded Spring - Using Global Equations to Satisfy Constraints

Global equations are a way of adding an additional equation to a model. A global equation can be used to describe a load, constraint, material property, or anything else in the model that has a uniquely definable solution. In this example, a structural mechanics model of a spring is augmented by a global equation which solves for the load to achieve a desired spring displacement.

Joule Heating of a Microactuator

This tutorial model of a two-hot-arm thermal actuator couples three different physics phenomena: electric current conduction, heat conduction with heat generation, and structural stresses and strains due to thermal expansion. In this model version, the geometry is parameterized so that the effect of varying the actuator's dimensions can be analyzed.