The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL News Magazine 2017

Electromagnetic Force Calculation Using Virtual Work and Maxwell Stress Tensor

The model compare the electromagnetic force calculated by *virtual work* and *maxwell stress tensor* methods on the axial magntic bearing. The forces is evaluated by studying the effect of a small displacement on the electromagnetic energy of the system. This is done by using the *Magnetic Fields*, *Deformed Geometry* and *Sensitivity* physics interfaces.

Applying a Current-Voltage Switch to Models

This example exemplifies how to model the switching between current and voltage excitations in *Terminal* boundary conditions. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Control Current and Voltage Sources with the AC/DC Module](https://www.comsol.com/blogs/control-current-and-voltage-sources-with-the-acdc-module/)".

Squeeze-Film Gas Damping of a Vibrating Disc

This benchmark model computes the total force acting on a vibrating disc in the frequency and time domains and compares both results with expressions derived analytically. When the vibration amplitude is small enough that the system is linear the frequency and time domain results agree well with theory. Larger amplitude vibrations, which result in a non-linear response that cannot be modeled in ...

Eigenfrequency Shifts Caused by Temperature Changes

This example explores the shift in natural frequencies caused by changing the temperature. One study investigates a doubly clamped beam where both ends are fixed, while the other study looks at a cantilever beam where only one end is fixed. The following effects are studied: * Stress stiffening * Change in size * Constraint effects * Temperature-dependent Young's modulus Results show that the ...

MEMS Pressure Sensor Drift Due to Hygroscopic Swelling

For their integration in microelectronic circuits, MEMS devices are bonded on printed circuit boards and connected with other devices. Then, the whole circuit is often covered with an epoxy mold compound (EMC) to protect the devices and their interconnects with the board. The epoxy polymers used for such applications are subject to moisture absorption and hygroscopic swelling, which can lead to ...

Disc Resonator Anchor Losses

This model shows how to compute the anchor loss limited quality factor of a diamond disc resonator. The resonator is anchored to the substrate by a polysilicon post and power is transmitted to the substrate through the post. A perfectly matched layer is used to represent the essentially infinite substrate. The model is based on a paper presented at the 2007 COMSOL conference in Grenoble: P. ...

Gecko Foot

In nature, geckos use dry adhesion forces to climb walls. They have inspired researchers to develop synthetic gecko foot hairs to be used in, for example, robot applications. This model contains the nano/micro hierarchy of a synthetic gecko foot hair, where cantilever beams both in nano and micro scales describe the seta and spatula parts of one spatula stalk attached to a gecko foot. The ...

31–37 of 37
Next |
Last