The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Thermal Actuator

This tutorial model of a two-hot-arm thermal actuator couples three different physics phenomena: electric current conduction, heat conduction with heat generation, and structural stresses and strains due to thermal expansion. In this model version, the geometry is parameterized so that the effect of varying the actuator's dimensions can be analyzed.

Surface Acoustic Wave Gas Sensor

A surface acoustic wave (SAW) is an acoustic wave propagating along the surface of a solid material. Its amplitude decays rapidly, often exponentially, through the depth of the material. SAWs are utilized in many kinds of electronic components, including filters, oscillators, and sensors. SAW devices typically apply electrodes to a piezoelectric material to convert an electric signal into a ...

Microresistor Beam

Microresistors allow for quick and accurate actuation or structural movement directly related to the electricity that is applied to them. Microresistors can be used in many applications where small perturbations or deflections are required to be applied to devices, almost instantaneously. The Microresistor Beam app illustrates the importance of fully coupled, multiphysics simulations. An ...

Electrostatically Actuated Cantilever

The elastic cantilever beam is one of the elementary structures used in MEMS designs. This model shows the bending of a cantilever beam under an applied electrostatic load. The model solves the deformation of the beam under an applied voltage.

Piezoelectric Shear-Actuated Beam

The model performs a static analysis on a piezoelectric actuator based on the movement of a cantilever beam, using the Piezoelectric Devices predefined multiphysics interface. Inspired by work done by V. Piefort and A. Benjeddou, it models a sandwich beam using the shear mode of the piezoelectric material to deflect the tip.

Composite Piezoelectric Transducer

This example shows how to set up a piezoelectric transducer problem following the work of Y. Kagawa and T. Yamabuchi. The composite piezoelectric ultrasonic transducer has a cylindrical geometry that consists of a piezoceramic layer, two aluminum layers, and two adhesive layers. The system applies an AC potential on the electrode surfaces of both sides of the piezoceramic layer. The goal is ...

Piezoresistive Pressure Sensor, Shell

Piezoresistive pressure sensors were some of the first MEMS devices to be commercialized. Compared to capacitive pressure sensors, they are simpler to integrate with electronics, their response is more linear and they are inherently shielded from RF noise. They do, however, usually require more power during operation and the fundamental noise limits of the sensor are higher than their capacitive ...

Piezoelectric Energy Harvester

This model shows how to analyze a simple, cantilever based, piezoelectric energy harvester. A sinusoidal acceleration is applied to the energy harvester and the output power is evaluated as a function of frequency, load impedance and acceleration magnitude.

External Material Examples, Structural Mechanics

A new way to specify user-defined material models is included in COMSOL Multiphysics version 5.2. For structural mechanics, you have the possibility to either completely define the material model in a domain, or to add an inelastic strain contribution to an elastic material. The external material functions are coded in C, and compiled into a shared library. By programming a wrapper function in ...

Gecko Foot

In nature, geckos use dry adhesion forces to climb walls. They have inspired researchers to develop synthetic gecko foot hairs to be used in, for example, robot applications. This model contains the nano/micro hierarchy of a synthetic gecko foot hair, where cantilever beams both in nano and micro scales describe the seta and spatula parts of one spatula stalk attached to a gecko foot. The ...