How to Model the Compression of a Hyperelastic Foam

Chandan Kumar September 5, 2018

To characterize hyperelastic materials, we need experimental data from a variety of tests, including subjection to uniaxial tension and compression, biaxial tension and compression, and torsion. Here, we show how to model the compression of a sphere made of an elastic foam using tension and compression test data obtained via uniaxial and equibiaxial tests. We demonstrate the use of the compressible Storakers hyperelastic material model for computation as well as how force-versus-stretch relationships are calculated for uniaxial and equibiaxial tests.

Read More

Bridget Paulus August 21, 2018

If you’ve ever gone on a road trip, you know that it’s a bit of a pain — literally. Part of why your body aches after driving long distances is due to whole body vibration (WBV), which can cause fatigue; motion sickness; and, eventually, serious health problems. To design systems that reduce WBV for cars and other applications, engineers need an efficient way to visualize the effect of vibrations on the human body. That’s where simulation comes in.

Read More

Thomas Forrister August 17, 2018

“If you want to find the secrets of the universe, think in terms of energy, frequency, and vibration.” — Nikola Tesla Can we “see” sound? Not directly, but we can come close. By changing our perspective, we can learn a lot about the nature of acoustics. One way to observe acoustics phenomena is by studying standing waves in a solid medium known as a Chladni plate. A special technique creates patterns on the plate that reveal sound’s physical nature.

Read More

Ravi Ranjan July 20, 2018

While working with rotating components, stability analysis is critical, as instability can lead to catastrophic failure. Rotating systems can lead to unstable responses due to asymmetrical inertia of the disk, asymmetrical stiffness of the shaft, or cross-coupling effects due to bearings. From the designer’s point of view, it’s important to ensure that the potentially unstable modes lie outside the operating range of the machine. Let’s explore how to predict the instability in rotor systems using the COMSOL Multiphysics® software.

Read More

Kateryna Vyshenska June 28, 2018

Say you want to compute thermal expansion and stresses in an object. You provide the heat fluxes and temperature constraints on the boundaries, compute, and get a convergence error. Often, this result comes from a lack of displacement constraints. However, it is not trivial to provide constraints that do not induce artificial stresses. Today, we showcase the Rigid Motion Suppression feature in the COMSOL Multiphysics® software, which you can use to automatically figure out the constraints you need.

Read More

Brianne Costa May 11, 2018

Shape memory alloys (SMAs) are alloys with “memory”: They can return to their original shape after being deformed via a change in pressure or temperature. SMAs are used in a wide variety of applications — including metallurgy, manufacturing, biomedicine, and children’s arts and crafts — and their uses are always expanding…

Read More

Ravi Ranjan April 18, 2018

When working with multibody systems, you may need to model a mechanism that transfers motion from one component to another. The mechanism used to implement this behavior, known as a cam-follower mechanism, plays an important role in many applications, including internal combustion engines, printing control mechanisms, textile weaving machines, and valves. You can easily model this type of mechanism with the Cam-Follower feature in the COMSOL® software. Let’s take a look at this feature in detail.

Read More

Henrik Sönnerlind April 13, 2018

When a tuning fork is struck, and held against a tabletop, the peak frequency of the emitted sound doubles — a mysterious behavior that has left many people baffled. In this blog post, we explain the tuning fork mystery using simulation and provide some fun facts about tuning forks along the way.

Read More

Caty Fairclough March 7, 2018

Additive manufacturing has a wide array of applications, such as creating custom medical devices, aerospace components, and artwork. With the list of potential uses continuing to grow, it’s important that this type of manufacturing can keep up with the demand. However, analyzing and optimizing this complex process can be difficult. What can engineers do to overcome this challenge?

Read More

Thomas Forrister March 5, 2018

The foundation of a tunnel, dam, building, or other structure can be analyzed with a method called triaxial testing. Performing triaxial tests before, during, and after construction helps to ensure that structures are safe and reliable. To better understand the mechanics of soil and improve a structure’s stability, you can model the loading and unloading curves for a triaxial testing apparatus and test the soil’s model parameters in the COMSOL Multiphysics® software.

Read More

Thomas Forrister February 20, 2018

When a car hits a pothole, the suspension system can take on major damage in a matter of seconds. Suspension systems must be able to adapt to myriad road conditions while supporting the wheels, seats, and body of the car. To study the performance of a vehicle suspension system, you can use multibody analyses and a simplified lumped model of a mechanical system.

Read More


Categories


Tags

1 2 3 15