Per page:
Search

Blog Posts Tagged Certified Consultants

Simulating Wear in COMSOL Multiphysics

August 8, 2014

Today, we invite guest blogger Nagi Elabbasi of Veryst Engineering to share the work they performed on simulating wear in COMSOL Multiphysics. Using COMSOL Multiphysics, we implemented a wear model and validated it by simulating a pin-on-disc wear test. We then used the model to predict wear in an automotive disc brake problem. The results we found showed good agreement with published wear data.

Stress and Fatigue in Modular Implants Used in Hip Joints

July 24, 2014

Modular orthopedic devices, common in replacement joints, allow surgeons to tailor the size, material, and design of an implant directly to a patient’s needs. This flexibility and customization is counterbalanced, however, by a need for the implant components to fit together correctly. With parts that are not ideally matched, micro-motions and stresses on mismatched surfaces can cause fretting fatigue and corrosion. Researchers at Continuum Blue Ltd. have assessed changes to femoral implant designs to quantify and prevent this damage.

Modeling Lithium-Ion Batteries for Quality and Safety Assurance

July 18, 2014

When it comes to lithium-ion batteries, quality and safety are top priorities. Assessor of 20,000 batteries per year, Intertek Semko AB understands this perhaps better than anyone else.

The Electromechanical Response of a Brake Design

May 13, 2014

We have the pleasure of introducing guest blogger, Mark Yeoman of Continuum Blue, who showcases what they can do for clients in the electromechanical brake field. Electromechanical brakes come in various designs, including single to multiple friction-face systems, power-off and power-on types, and those that include permanent magnets. With so many options, how do engineers make the right design choices for their application? With COMSOL Multiphysics, this can easily be done. Here, I will show you how.

AMPHOS 21 on Simulating Carbon Sequestration

May 5, 2014

According to AMPHOS 21, a COMSOL Certified Consultant, one of the proposed solutions to releasing carbon dioxide (CO2) into the atmosphere is to store the CO2 in geological formations, a technique referred to as carbon dioxide sequestration. This notion led the engineers at AMPHOS 21 to study the physical and chemical processes that occur during the injection of the gas into earth’s subsurface.

Natural Frequencies of Immersed Beams

April 22, 2014

Today, we invite guest blogger Nagi Elabbasi of Veryst Engineering to share a modeling example of immersed beams. When thin structures such as beams, plates, or shells are immersed in a fluid, their natural frequencies are reduced. The fluid also affects their mode shapes and is a source of damping. This phenomenon affects structures across a wide range of industries and sizes, from micro-scale structures (e.g. MEMS actuators) to larger structures (e.g. ships).

Amphos 21: Modeling Coupled Thermo-Hydro-Mechanical-Chemical Phenomena

February 18, 2014

Today, we are pleased to introduce a new guest author, Jorge Molinero of Amphos 21, a COMSOL Certified Consultant, who blogs about their new iCP technology. Along with several other parties, we at Amphos 21 have launched iMaGe, a multiphysics and geochemistry interfacing platform. The platform’s first product, iCP, connects COMSOL and PHREEQC, enabling the modeling of coupled Thermo-Hydro-Mechanical-Chemical phenomena.

Improving Bioreactor Performance with COMSOL Multiphysics

January 31, 2014

We have the pleasure of introducing a new guest blogger, Mark Yeoman of Continuum Blue, who showcases what they can do for their biomedical engineering clients. In a recent webinar, I had the opportunity to highlight some of the great things we at Continuum Blue are doing in the biomedical field. In this guest post, I will delve deeper into how we use COMSOL software to help clients improve bioreactor performance and show you a bioreactor modeling example.


EXPLORE COMSOL BLOG