Coupling Heat Transfer with Subsurface Porous Media Flow

Phillip Oberdorfer | April 24, 2014

In the second part of our Geothermal Energy series, we focus on the coupled heat transport and subsurface flow processes that determine the thermal development of the subsurface due to geothermal heat production. The described processes are demonstrated in an example model of a hydrothermal doublet system.


Alexandra Foley | April 23, 2014

Magnetic fields are fundamental forces in the universe. Without them, planetary orbits, electricity, and elementary particles could not exist. Helmholtz coils are used by scientists to generate uniform magnetic fields to study electromagnetism and its characteristics. They are used in MRI, spectroscopy, magnetoresistance measurements, and equipment calibrations. Here, we’ll look at what Helmholtz coils are, why they are important, and how can they be modeled.


Clemens Ruhl | April 21, 2014

The Wall Distance interface is used to calculate the distance to a wall in the turbulent flow interfaces available in COMSOL Multiphysics. It can be combined with any other interface and comes in handy when we need to calculate the distance to the nearest wall or detect, as part of a dynamic model, when a moving object will hit a wall. Today, we will study how the Wall Distance interface works and how other interfaces can benefit from its capabilities.


Edmund Dickinson | April 17, 2014

What’s a penny made of? Though they appear to be solid copper coins, they actually don’t contain much copper at all these days. Instead, the U.S. Mint saves money by applying only a veneer of valuable metal onto a less expensive one. Have you ever thought about the manufacturing process by which this is achieved? Let’s find out.

Fanny Littmarck | April 15, 2014

There are two main resources for finding COMSOL Multiphysics tutorial models: our online Model Gallery and the Model Library within the software. We also continuously push out model updates that you can download to your Model Library. Here’s your guide to what these resources are and how to use them.


Pär Persson Mattsson | April 11, 2014

Many of us need up-to-date software and hardware in order to work efficiently. Therefore, we need to follow the pace of technological development. But, what should we do with the outdated hardware? It feels wasteful to send the old hardware to its grave or to just put it in a corner. Another, more productive, solution is to use the old hardware to build a Beowulf cluster and use it to speed up computations.


Nagi Elabbasi | April 22, 2014

Today, we invite guest blogger Nagi Elabbasi of Veryst Engineering to share a modeling example of immersed beams. When thin structures such as beams, plates, or shells are immersed in a fluid, their natural frequencies are reduced. The fluid also affects their mode shapes and is a source of damping. This phenomenon affects structures across a wide range of industries and sizes, from micro-scale structures (e.g. MEMS actuators) to larger structures (e.g. ships).

Fanny Littmarck | April 18, 2014

Did you know that you can use MATLAB® functions in your COMSOL Multiphysics® models? Well, you can, and in this video tutorial we will show you how, using LiveLink™ for MATLAB®.


Lorant Olasz | April 16, 2014

The geometric kernel is the software component responsible for handling geometry in COMSOL Multiphysics®. You may be wondering what this means or how and why you would use it when modeling. Let’s find out.

Walter Frei | April 14, 2014

One of the questions we get asked all the time is: “Can I use COMSOL Multiphysics for solving my fluid-structure interactions problems?” Of course the answer is yes, so let’s talk a little about the various fluid-structure interaction (FSI) modeling techniques. Along the way, we will introduce the add-on modules you will need for these various types of analyses.

Eyal Spier | April 10, 2014

The last two blog posts in the Chemical Kinetics series were concerned with modeling chemical reactions based on a particular set of parameters. While this is important and of great academic and industrial interest, the relevant parameters were assumed. Now, let’s find out how to estimate the chemical parameters using COMSOL Multiphysics.

1 43 44 45 46 47 101