Evaluating an Insulin Micropump Design for Treating Diabetes

Bridget Cunningham | July 21, 2016

In any form of treatment, it is always desirable to minimize the level of discomfort that the treatment process causes patients, while ensuring overall safety and effectiveness. For diabetes patients, insulin injections remain an important form of treatment, but the process itself can be painful. With the help of multiphysics simulation, a team of researchers from the University of Ontario Institute of Technology sought to develop a MEMS-based micropump that could administer insulin injections in a safe and painless way.

Read More

Brianne Costa | July 11, 2016

For gas pipeline maintenance standards, the adage “rules are meant to be broken” may not apply, but “rules are meant to be updated” certainly does. Specifically, the generous distance requirements between pipeline squeeze-off locations and pipe fittings cause potentially unnecessary digging. This prompted Operations Technology Development (OTD), a partnership of natural gas distribution companies, to initiate a project with Gas Technology Institute (GTI), where researchers used simulation to investigate the standard distance requirements for streamlined and safe pipeline maintenance.

Read More

Amlan Barua | June 29, 2016

Simulation apps, as we’ve highlighted on the blog, are a powerful tool for hiding complex physics behind an easy-to-use, intuitive interface. While the app can be used by those with little simulation expertise, understanding the layers beneath its interface — the embedded model and underlying theory — does require a good understanding of COMSOL Multiphysics and the physics at hand. Let’s explore the connection between theory, model, and app using the example of analyzing buckling in a truss tower design.

Read More

Brianne Costa | May 31, 2016

Reservoirs, dams, and other outdoor structures need to be strong, reliable, and sound. The porous materials found within these structures can be easily damaged by pressure changes that cause fluid flow and gradual caving and sinking. Using the multiphysics simulation capabilities of COMSOL Multiphysics and the Poroelasticity interface, we can accurately analyze porous materials to evaluate and avoid deformation in such structures.

Read More

Aditi Karandikar | May 11, 2016

Lasers, focused beams of photons of a single wavelength, find use in a wide variety of applications today — from noninvasive surgeries and fiber optic communication to material processing and even DVD players. Let’s see how a research team from Lawrence Livermore National Laboratory (LLNL) used the power of multiphysics simulation to investigate laser-material interaction to avoid the damage of optics internal to high-power laser systems.

Read More

Alfred Svobodnik | April 4, 2016

Today, we welcome Managing Director Dr. Alfred J. Svobodnik of Konzept-X GmbH, a COMSOL Certified Consultant and developer of multidisciplinary virtually optimized industrial design technology (M-voiD® technology). MP3 players, smartphones, and tablets allow us to listen to our favorite music almost everywhere. While driving in a car, we should also enjoy the highest sound quality. Learn how to use simulation to reproduce sound in one of the most difficult environments — a vehicle — to design better automotive sound systems.

Read More

Abbie Weingaertner | July 6, 2016

Consider a class of civil engineering structures like the Pratt truss bridge. While the concept behind each design is similar, the actual configuration of the bridge and the loads that are applied to it varies by each case. With the Application Builder, you can design a simulation tool that enables users to easily modify parameters to account for these differences in geometry and loads. Learn more with our Truss Bridge Designer computational app.

Read More

Abbie Weingaertner | June 9, 2016

Ever been in a tall building on a windy day or had an aircraft pass over your house? Along with the noise that you hear, which can be disruptive and unpleasant in its own right, you’ll also notice some low-frequency vibrations that can ultimately affect the structure’s stability. One solution to this problem is to incorporate dampers, particularly viscoelastic structural dampers, into the structure’s design. With simulation apps, the path to optimizing these devices is more efficient than ever before.

Read More

Caty Fairclough | May 24, 2016

The magnetostrictive effect causes magnetic materials to change their shape when a magnetic field is applied. Materials that exhibit such behavior are used in a range of devices, from loudspeakers to actuators. In order to analyze one type of device, a magnetostrictive transducer, researchers from ETREMA Products, Inc. performed single-physics and multiphysics simulation studies in COMSOL Multiphysics. See how the flexible nature of the software enabled the team to study various aspects of the device and optimize its overall design.

Read More

Bridget Cunningham | May 2, 2016

Graphene is a material with a strong presence — and impact — throughout the scientific community. Amongst its many uses, researchers are looking to graphene as a potential material solution within sensor designs for medical and biosensing applications. Today, we’ll explore the role of simulation in analyzing and optimizing a 3D multilayered graphene biosensor.

Read More

Caty Fairclough | March 21, 2016

When designing tall, slender truss towers topped with heavy loads, engineers may want to account for buckling. This requires calculating the critical compressive load of the structure at hand. Simulation is a time- and cost-efficient way to generate such results. Now, with simulation apps, this process is becoming even faster. Those without simulation expertise can easily run their own tests to calculate the critical compressive load for different truss tower configurations.

Read More

1 2 3 8