Simulation Paves the Way for More Efficient OLED Devices

Caty Fairclough | April 7, 2016

When it comes to creating the next generation of flat panel displays and solid-state area lighting, organic light-emitting diodes, or OLEDs, may be used to help. While recognized for its various advantages, this emerging technology suffers from some weaknesses that reduce its overall efficiency. One such example is light loss, which is partially caused by the plasmon coupling effect. Looking to reduce the effect’s prominence in OLED devices, researchers from Konica Minolta Laboratory turned to the COMSOL Multiphysics® software.

Andrew Strikwerda | February 9, 2016

Electrical cables are classified by parameters such as impedance and power attenuation. In this blog post, we consider a case for which analytic solutions exist: a coaxial cable. We will show you how to compute the cable parameters from a COMSOL Multiphysics simulation of the electromagnetic fields. Once we understand how this is done for a coaxial cable, we can then compute these parameters for an arbitrary type of transmission line or cable.

Caty Fairclough | November 9, 2015

Doctors can more effectively treat skin cancer when skin tumors are detected early. While visual examinations are typically used to identify such tumors, noninvasive tools like dielectric probes offer another approach. With COMSOL Multiphysics, we analyze the functionality and safety of a dielectric probe used for skin cancer diagnosis.

Andrew Strikwerda | August 4, 2015

Within the research community — and on the COMSOL Blog — graphene has been a topic of great interest. The unique properties that make this material so remarkable can also make it challenging to analyze. In simulation, a particularly difficult question to address is whether graphene should be modeled as a 2D sheet or a thin 3D volume. We provide answers to this question in today’s blog post.

Walter Frei | June 30, 2015

Over the last several weeks, we’ve published a series of blog posts addressing the various domain and boundary conditions available for wave electromagnetics simulation in the frequency domain; as well as modeling, meshing, and solving options. In this blog post, I will tie all of this information together and provide an introduction to the various types of problems that you can solve in the RF and Wave Optics modules.

Walter Frei | June 22, 2015

A question that we are asked all of the time is if COMSOL Multiphysics can model laser-material interactions and heating. The answer, of course, depends on exactly what type of problem you want to solve, as different modeling techniques are appropriate for different problems. Today, we will discuss various approaches for simulating the heating of materials illuminated by laser light.

Brianne Costa | November 26, 2015

Locating and removing landmines and other improvised explosive devices (IEDs) is an important yet challenging task, especially with new advancements in cloaking technology. Using COMSOL Multiphysics® software, one team of researchers studied electromagnetic detection for subsurface objects to better understand the technique and improve its accuracy.

Caty Fairclough | October 21, 2015

Wireless power transfer involves the transfer of power between a transmitting and a receiving unit and is used to wirelessly charge electronics like mobile phones and electric cars. While wireless power transfer offers many benefits, there are some challenges that this technology encounters. This is where simulation comes in handy. For instance, some WPT technologies must be oriented in a certain way to ensure proper performance. Today, we’ll analyze the impact of orientation on the functionality of two WPT antennas.


Jiyoun Munn | July 1, 2015

In electromagnetics simulations, the ultimate goal is to boost the efficiency and productivity of your device by closely mimicking the effects observed in reality. This process requires an understanding of the reality you are trying to describe and mimic, as well as the details that should be included. Let’s explore the reality of electromagnetic waves with regards to the measurement environment.


Brianne Costa | June 23, 2015

As you leave for work, your garage door closes and texts your office coffeemaker to start brewing a fresh pot. During the day, your sprinkler system gets a weather report that it’s going to rain and cancels its afternoon watering. This isn’t a futuristic television show, it’s the Internet of Things, and with the next generation of wireless communication, 5G, it’s coming soon. First, we need to optimize the performance of existing mobile device antennas.


Walter Frei | June 18, 2015

When solving wave electromagnetics problems with either the RF or Wave Optics modules, we use the finite element method to solve the governing Maxwell’s equations. In this blog post, we will look at the various modeling, meshing, solving, and postprocessing options available to you and when you should use them.

1 2 3 5