Per page:

Mesh Blog Posts

Designing New Structures with Shape Optimization

December 29, 2015

While designing a structure, have you ever been unsure of how to achieve the best shape? If so, then you will want to add a useful technique called shape optimization to your COMSOL Multiphysics modeling skill set. Today, we will discuss the concept of shape optimization and demonstrate its use through a classical problem.

Changing the Dimensions of a Model Using Shape Optimization

December 24, 2015

In this blog post, we will introduce the concept of shape optimization for adjusting part dimensions by using analytic sensitivity methods. If you have a single objective function that you want to improve, a set of geometric parameters that you want to change, as well as a set of constraints, then you can use the functionality of the Optimization Module and the Deformed Geometry interface in COMSOL Multiphysics to find the optimal structure without any remeshing. Let’s find out how!

How to Improve Your Paddle Stroke with Simulation

September 8, 2015

Good competitive paddling requires strength, timing, consistency, and teamwork. Initially, this may seem quite easy. Simply stick your paddle in the water and make the water go backward so that the boat moves forward. As it turns out, there are actually many different paddling strokes you can use depending on the situation.

Deformed Mesh Interfaces: Rotations and Linear Translations

September 7, 2015

When using the finite element method, we often want to model solid objects that are rotating and translating within other domains. The deformed mesh interfaces in COMSOL Multiphysics can be used to model these movements. In this blog post, we will look at the modeling of large linear translations and rotations of domains within other domains, while introducing efficient modeling techniques for addressing such cases.

Model Translational Motion with the Deformed Mesh Interfaces

September 4, 2015

COMSOL Multiphysics includes two interfaces for manually defining the deformation of finite element mesh, the Deformed Geometry interface and the Moving Mesh interface. In this blog post, we will address when to use these interfaces and how to use them to efficiently model translational motion.

Improving Your Meshing with Swept Meshes

September 2, 2015

Modeling geometries with high aspect ratios can be one of the more challenging tasks for the finite element analyst. You want to have a mesh that will accurately represent the geometry and the solution, but you do not want too many elements, as solving your models would then require excessive computational resources. Here, we will look at using swept meshing to generate efficient and accurate finite element meshes in the context of some common modeling cases.

Guide to Frequency Domain Wave Electromagnetics Modeling

June 30, 2015

Over the last several weeks, we’ve published a series of blog posts addressing the various domain and boundary conditions available for wave electromagnetics simulation in the frequency domain; as well as modeling, meshing, and solving options. In this blog post, I will tie all of this information together and provide an introduction to the various types of problems that you can solve in the RF and Wave Optics modules.

Improving Your Meshing with Partitioning

March 27, 2015

Often, the most tedious step of finite element modeling is subdividing your CAD geometry into a finite element mesh. This step, usually just called meshing, can sometimes be fully automated. More often, however, the careful finite element analyst will want to semi-manually create their meshes. Although this does require more work, sometimes there are significant advantages in doing so. In this blog entry, we will look at one of the key manual meshing techniques: the concept of geometric partitioning.