Model Cables and Transmission Lines in COMSOL Multiphysics

Andrew Strikwerda | February 9, 2016

Electrical cables are classified by parameters such as impedance and power attenuation. In this blog post, we consider a case for which analytic solutions exist: a coaxial cable. We will show you how to compute the cable parameters from a COMSOL Multiphysics simulation of the electromagnetic fields. Once we understand how this is done for a coaxial cable, we can then compute these parameters for an arbitrary type of transmission line or cable.


James Ransley | January 27, 2016

Previously on the blog, we detailed the standards employed to describe piezoelectric materials. There are two piezoelectric material standards supported in COMSOL Multiphysics: the IRE 1949 standard and the IEEE 1978 standard. Today, we will demonstrate how to set up the orientation of a crystal, specifically an AT cut quartz plate, within both standards.


Categories

Daniel Smith | January 14, 2016

I love my Philips Hue lighting system, which I bought over a year ago. The system allows you to set millions of different colors and thousands of brightness levels for up to 18 bulbs using a smartphone. You can also program the system to automatically turn on as you approach your residence, known as geofencing, or at specific times of the day. But how does the light quality compare to that of other lighting technologies?


Nirmal Paudel | January 7, 2016

The nonlinear magnetic saturation curves in the AC/DC Module’s Nonlinear Magnetic Materials Database can now be used in frequency-domain simulations using COMSOL Multiphysics version 5.2. You can now convert the associated BH or HB curve, which was previously supported only for stationary and time-dependent studies, into an effective BH or HB curve using the newly added Effective Nonlinear Magnetic Curves Calculator app. In this blog post, we will discuss how this app is used in frequency-domain simulations.


Brianne Costa | November 26, 2015

Locating and removing landmines and other improvised explosive devices (IEDs) is an important yet challenging task, especially with new advancements in cloaking technology. Using COMSOL Multiphysics® software, one team of researchers studied electromagnetic detection for subsurface objects to better understand the technique and improve its accuracy.


Bridget Cunningham | November 3, 2015

Silicon chips have been the foundation of power electronics over the years. However, as more applications are using increasingly higher amounts of electrical power, silicon has begun to reach its limits. Wide band gap semiconductors offer an opportunity to surpass these confines, operating at high frequencies, voltages, and temperatures. Looking to optimize their development of wide band gap solutions, engineers at Wolfspeed utilized the power of the Application Builder within COMSOL Multiphysics.


Walter Frei | January 20, 2016

Radiofrequency tissue ablation is a medical procedure that uses targeted heat for a variety of medical purposes, including killing cancerous cells, shrinking collagen, and alleviating pain. The process involves applying mid- to high-frequency alternating current directly to the tissue, raising the temperature in a focused region near the applicator. We can simulate this process with COMSOL Multiphysics and the AC/DC and Heat Transfer modules. In today’s blog post, we will go over some key concepts for modeling this procedure.


Brianne Costa | January 11, 2016

In 2012, guests at a California music festival called Coachella were shocked to see rap artist Tupac Shakur perform onstage. Why? Because the famed musician had been dead for nearly two decades. Viral reactions called the digitized performance a “hologram”, which is actually a misnomer. This stunt is an example of the Pepper’s Ghost optical illusion, which can be explained with ray optics.


Bridget Cunningham | December 14, 2015

The demand for better performance and increased accuracy in touchscreen devices is growing. Simulation, a fast and cost-effective approach to product development, helps to meet this goal. With each design modification, colleagues will typically rely on you to run simulation tests, awaiting your feedback before reaching out to customers. As researchers at Parade Technologies (formerly Cypress Semiconductor) have discovered, creating apps and distributing them to colleagues is a valuable way to save time and more effectively communicate with customers.


Caty Fairclough | November 9, 2015

Doctors can more effectively treat skin cancer when skin tumors are detected early. While visual examinations are typically used to identify such tumors, noninvasive tools like dielectric probes offer another approach. With COMSOL Multiphysics, we analyze the functionality and safety of a dielectric probe used for skin cancer diagnosis.


Caty Fairclough | October 21, 2015

Wireless power transfer involves the transfer of power between a transmitting and a receiving unit and is used to wirelessly charge electronics like mobile phones and electric cars. While wireless power transfer offers many benefits, there are some challenges that this technology encounters. This is where simulation comes in handy. For instance, some WPT technologies must be oriented in a certain way to ensure proper performance. Today, we’ll analyze the impact of orientation on the functionality of two WPT antennas.


Categories

1 2 3 4 5 19