Per page:
Search

Electrical Blog Posts

Creating Ultrafast Polymerase Chain Reaction Tests with LEDs

August 26, 2015

Polymerase chain reaction tests have many applications within medical and biological research. In the past, these tests have been performed within a laboratory setting due to their high power requirements and the slow speed at which results are delivered. Researchers at the University of California, Berkeley have developed a new LED-based polymerase chain reaction system that, with its simplicity and speed, could be used in point-of-care testing.

Analyzing Mutual Inductance in Different Coil Arrangements

August 19, 2015

Have you ever noticed that being around a happy, enthusiastic friend makes you feel happy too? You can look at mutual induction in a similar way: A current flowing through one circuit creates a current in a nearby circuit. Mutual inductance measures the amount of change required for this effect to take place. Here, we explore using simulation to compute the mutual inductance in different wire coil arrangements.

Simulating a MEMS-Based Pressure Sensor Inspired by a Cave Fish

August 17, 2015

Many aquatic vehicles use power-hungry active sensing methods to detect and identify objects within an oceanic environment. In order to find an energy-efficient alternative, a team of researchers from the PSG College of Technology in India used numerical simulation to investigate a pressure sensor design inspired by a blind cave fish. In this blog post, we’ll take a closer look at this passive MEMS-based pressure sensor.

App: Measuring the Diffraction Efficiency of a Wire Grating

August 13, 2015

Diffraction gratings are often used as a tool for bending and spreading light in optical instruments. Analyzing the diffraction efficiency of such optical components is important, as this can affect the instrument’s performance. Simulation offers an efficient way for testing various grating designs to achieve an optimal configuration. By creating a simulation app, you can further expedite this process, extending simulation capabilities to a wider audience. Our Plasmonic Wire Grating Analyzer demo app highlights this approach.

Should We Model Graphene as a 2D Sheet or Thin 3D Volume?

August 4, 2015

Within the research community — and on the COMSOL Blog — graphene has been a topic of great interest. The unique properties that make this material so remarkable can also make it challenging to analyze. In simulation, a particularly difficult question to address is whether graphene should be modeled as a 2D sheet or a thin 3D volume. We provide answers to this question in today’s blog post.

Simulating a Transparent Light Pipe to Optimize Transmittance

August 3, 2015

Imagine commuting home from work in a dark, dreary subway station. Catching a rare glimpse of natural sunlight could brighten your day and make the ride home much more bearable, but how? With light pipes, natural light can be distributed in otherwise dark areas without any electricity. In this blog post, we explore these simple and elegant devices and show how they can be analyzed in greater detail through simulation.

How to Model Magnetic Bearings in COMSOL Multiphysics®

July 28, 2015

Magnetic bearings are used in many industrial applications, including power generation, petroleum refinement, turbo machinery, pumps, and flywheel energy storage systems. Unlike mechanical bearings, these types of bearings support moving loads without physical contact through magnetic levitation. Valued for their frictionless operation and ability to run without lubrication, magnetic bearings are a low-maintenance alternative to mechanical bearings with a longer lifespan. Learn how to calculate design parameters like magnetic forces, torque, and magnetic stiffness using the COMSOL Multiphysics® software.

Simulating a Valveless Micropump Mechanism

July 17, 2015

Microfluidic systems often rely on valveless pumps, as they are both gentle on the biological material and low in the risk of clogging. However, by design, this type of pump is not suitable for viscous fluids and systems with small length scales or low flow rates. To overcome this limitation, you can introduce a micropump mechanism that converts oscillatory fluid motion into a unidirectional net flow.


209–216 of 379
EXPLORE COMSOL BLOG