Simulating the Art of Swing Bowling in Cricket

Phil Kinnane | November 5, 2015

Cricket is the second most popular sport in the world, but it’s also considered an art. This is seen in the technical abilities required by the batsman to protect his wicket and go on to score runs. It’s also due to the type of bowling used to get the batsman out, which depends on a myriad of physical factors. Here, we investigate one of these techniques — the art of swing bowling.


Fabio Bocchi | October 14, 2015

As a technical support engineer, one of the most common technical questions I receive is: “How can I compute the mass conservation of a fluid flow simulation or the energy balance of a conjugate heat transfer simulation?” This is often requested to investigate and ensure a simulation’s accuracy. Here, I will demonstrate how to perform these calculations in COMSOL Multiphysics and introduce some of the predefined variables available for postprocessing the energy rate terms of the energy balance equation.

Brianne Costa | September 9, 2015

Fluid dampers have a range of uses, from stabilizing skyscrapers to controlling fluid flow in microflow devices. Through a process called viscous heating, these dampers are able to dissipate mechanical energy into heat. Too much heat can cause damage to the damper, so it’s important to understand the viscous heating process when optimizing your fluid damper designs.


Bridget Cunningham | April 27, 2015

Over the years, the development of sensor technology has enabled more accurate measurements of fluid flow. One such device is the thermal flow sensor. This instrument is valued for its simple design and implementation as well as its high degree of accuracy. Using COMSOL Multiphysics, a team of researchers from the University of Cambridge designed a 3D model to analyze the dynamics of a thermal flow sensor, a component of a flow meter.


Brianne Costa | April 3, 2015

As the burning of fossil fuels becomes a more pressing issue, manufacturers are introducing more fuel efficient cars to the market. One main contributor to fuel burn is the car’s aerodynamic drag. Complexly shaped, cars are very challenging to model and it’s difficult to quantify the aerodynamic drag computationally. The Ahmed body is a benchmark model widely used in the automotive industry for validating simulation tools. The Ahmed body shape is simple enough to model, while maintaining car-like geometry features.


Brianne Costa | March 24, 2015

Try pouring some wine into a glass. Don’t drink it yet — this is a scientific experiment. When you hold up your glass, you’ll see what look like teardrops running down the sides. These tears of wine are caused by the Marangoni effect, which describes a mass transfer along the surface of two fluid phases caused by surface tension gradients along the interface between the two phases (for example liquid and vapor).


Bridget Cunningham | September 15, 2015

Previously on the blog, we introduced you to the constructal law, the law of physics that accounts for the natural tendency of designs to evolve freely over time to flow more easily. As research has been conducted to support this pattern of design evolution, an even greater phenomenon has come to light: Humans and technology are one species, evolving together.


Peter Lyu | June 16, 2015

In fluid flow simulations, it is often important to evaluate the forces that the fluid exerts onto the body — for example, lift and drag forces on an airfoil or a car. Engineers can use these body forces to quantify the efficiency and aerodynamic performance of designs. Today, we will discuss different ways to compute lift and drag in COMSOL Multiphysics.


Fabrice Schlegel | April 7, 2015

Today, we compare the Boussinesq approximation to the full Navier-Stokes equations for a natural convection problem. We also show you how to implement the Boussinesq approximation in COMSOL Multiphysics software and discuss potential benefits of doing so.

Bridget Cunningham | April 2, 2015

In this blog post, we investigate syngas combustion in a round-jet burner using the Reacting Flow interface and the Heat Transfer in Solids interface. The results from this benchmark model are compared to experimental findings.

Fabrice Schlegel | January 30, 2015

Journal bearings are lubricated components that support a rotating shaft. Cavitation affects the performance of these bearings and must be considered during the design stage. Here, I’ll explain what journal bearings are and why predicting cavitation is important, as well as share an industry example with you.


1 2 3 4 6