Teaching Students About Acoustics Phenomena with Apps

Caty Fairclough April 27, 2018

Picture a classroom filled with students. At the front, a teacher discusses room acoustics, including the underlying theories and acoustics phenomena involved. To help students visualize these concepts, the teacher has created a simulation app. This app, which is accessible through a web browser, enables students to dynamically alter parameters and see the results, creating a vivid learning experience. At the Technical University of Munich (TUM), several such apps are already being used, providing benefits to teachers and students alike…

Read More

Bridget Paulus February 15, 2018

The interference fit between two parts has to be just right. Think of it as the Goldilocks quandary of structural mechanics: if the fit is too loose, the parts won’t hold together; if it’s too tight, the parts can’t join. For optimal performance of a structure involving joined parts, the interference fit needs to be calculated. One method is to create a simulation app, which can efficiently compute the contact pressure and surface displacement of two joined parts.

Read More

Fanny Littmarck December 18, 2017

In a lineup of online shopping results, jackets labeled as being made with GORE-TEX® product technology signal “high quality” to the consumer. The company behind this technology, W. L. Gore & Associates, Inc., specializes in materials science for fabrics, medical products, and performance solutions. The companies that produce the end products rely on material that performs as expected. To accelerate their product development efforts, W. L. Gore & Associates, Inc. uses simulation, apps, and the COMSOL Server™ product.

Read More

Bridget Cunningham August 3, 2017

There are many ways to improve the frequency response of frequency-selective surfaces. However, optimizing these structures can require multiple steps. Every change to a design parameter — unit cell type, polarization, substrate properties, etc. — needs the expertise of simulation engineers. Simulation apps enable those with little or no simulation experience to run analyses for their specific stage of the design process on their own.

Read More

Annette Pahl July 5, 2017

Plasma modeling normally requires knowing the electron energy distribution function (EEDF) as well as transport properties like electron mobility and diffusivity. To accurately calculate these quantities with the Boltzmann equation, we must also know the electron density (and possibly the density of all species subject to electron impact reactions). However, the electron (and species densities) are outputs of a plasma model, resulting in a catch-22. Let’s take a look at how to overcome this challenge using an example app.

Read More

Temesgen Kindo June 28, 2017

You solved a model under certain assumptions. When you analyze the results, you find out that those assumptions do not hold. Now, you have to amend your analysis by incorporating new physics features or changing the study type. What if you could automate such processes? Today, we will discuss how to do so easily using the Model Method feature introduced in version 5.3 of the COMSOL Multiphysics® software.

Read More

Walter Frei June 5, 2017

Have you ever wanted to include a randomly created geometry in your model? Perhaps you want to simulate a natural material or an arrangement of parts that has some known statistical distribution of dimensional variations. In such cases, we may want to create a random geometry in the COMSOL Multiphysics® software. With the release of version 5.3, we can now create random geometries using a model method. Let’s take a look at how to do so with a tasty example.

Read More

Chien Liu May 31, 2017

You can use the new Schrödinger Equation interface for modeling with the Semiconductor Module in the latest release of the COMSOL® software. Let’s look at a simple example app that uses this interface to estimate the electron and hole ground state energy levels for a superlattice structure. By building apps like this one, device engineers are able to calculate the band gap for a given periodic structure and adjust the design parameters until a desired band gap value is achieved.

Read More

Caty Fairclough May 29, 2017

When designing a solar dish receiver, you may need to rerun your simulation multiple times to find an optimized design iteration. To save time, you can build an app that enables you to rapidly test different geometries and more easily create improved designs. Let’s explore a new simulation app in COMSOL Multiphysics® version 5.3, the Solar Dish Receiver Designer, which you can use as inspiration for building apps of your own.

Read More

Prashant Srivastava May 25, 2017

Rotating components are important elements in machines such as gas turbines, turbochargers, pumps, compressors, electric generators, and motors. Designing such a component requires studying its critical speed, which is the speed at which the amplitude of the vibration in the system becomes large — often leading to failure. Let’s explore how to find the critical speeds for a wide range of rotors via the Rotor Bearing System Simulator, created using the COMSOL Multiphysics® software.

Read More

Amelia Halliday May 8, 2017

When making improvements to a model in the COMSOL Multiphysics® software, you are likely to add more parameters and variables. As the complexity of your model grows, it can become difficult to keep track of where these parameters are being used and defined, as well as to recall them for use in the settings of other nodes. In this blog post, we show you how to use the Auto Completion and Find tools for efficient model setup.

Read More

1 2 3 9