Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Impact Damage in a Composite Plate and Its Detection

V. Pavelko[1], I. Pavelko[1], M. Smolyaninovs[1], H. Pffeifer[2], M. Wevers[2]
[1]Riga Technical University, Riga, Latvia
[2]Catholic University Leuven, Leuven, Belgium

A problem of damage prediction in aircraft structure and its non-destructive evaluation is very important for aircraft structural health assessment. The analysis of the features of direct impact of thin-walled laminate component of aircraft was performed by COMSOL Multiphysics software. Mainly the GFRC and CFRC laminates were selected in form either thin separate plate or sandwich structure. The ...

Multiscale Damage Detection in Conductive Composites

R. C. Thiagarajan
ATOA Scientific Technologies Private Limited, Bangalore, India

Conductive Composites such as carbon fiber reinforced composites are increasingly used in safety critical aerospace applications. The catastrophic macro structural failure of composite structures initiates from a micro level failure event such as fiber breaks. The ability to detect damage early on can improve the safety level and reliability of composite structures. A multilevel self-sensing ...

Dynamic Crack Propagation in Fiber Reinforced Composites

C. Caruso[1], P. Lonetti[1], and A. Manna[1]

[1]Department of Structural Engineering, University of Calabria, Arcavacata di Rende, CS, Italy

A generalized model to predict dynamic crack propagation in fiber composite structures is proposed. The proposed approach is based on a generalized formulation based on the Fracture Mechanics approach and Moving mesh methodology. Consistently to the Fracture Mechanics, the crack propagation depends from the energy release rate and its mode components, which are calculated by means of the ...

Fretting Wear and Fatigue Analysis of a Modular Implant for Total Hip Replacement

M.S. Yeoman[1], A. Cizinauskas[1], D. Rangaswamy[1]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom

Modular orthopaedic devices are a feature of total joint replacements today. These modular orthopaedic devices allowing surgeons to choose from a variety of available implant sizes, designs & material options for the procedure required and the patient specific requirements. However, even though this allows for greater scope of implant construction, if the various components of the modular design ...

A Parametric Study on the Dynamic Behavior of Cable Supported Bridges Under Moving Loads Affected by Accidental Failure Mechanisms

P. Lonetti[1], A. Pascuzzo[1], R. Sarubbo[1]
[1]Department of Structural Engineering, University of Calabria, Rende, Cosenza, Italy

The dynamic behavior of cable supported bridges subjected to moving loads and affected by corrosion and accidental failure mechanism in the cable suspension system is investigated. The different types of cable supported bridges are distinctively characterized by the configuration of the cable system [1]. The suspension system comprises a parabolic main cable and vertical hanger cables connecting ...

Thermal and Material Flow Modelling of Friction Stir Welding Using COMSOL

H. Schmidt[1,2], and J. Hattel[1]
[1]Technical University of Denmark, Kgs. Lyngby, Denmark
[2]HBS Engineering, Frederiksberg, Denmark

Two friction stir welding models are presented – a global thermal model using the temperature dependent heat source and a local material flow and heat generation model allowing for detailed investigation of different contact conditions. The two models are coupled into a larger local-global model. The flow model includes frictional dissipation from the contact between the work piece and the ...

Fluid-structure Interaction Modeling of Air Bearing

H.R. Javani[1], P. Kagan[2], F. Huizinga[1]
[1]ASML - MDev – Mechanical analysis, Veldhoven, The Netherlands
[2]ASML - MDev – System Dynamics, Veldhoven, The Netherlands

Air bearings are special type of bearings which provide nearly zero friction between two surfaces. This is achieved by a compressed layer of gas between the surfaces. This study presents a modeling technique for an Air bearing component. COMSOL Multiphysics® is used to efficiently solve a coupled Fluid-Structure Interaction analysis. Computational time is significantly reduced compared to ...

Structural Durability Analysis of Powertrain Mounting Bracket

Sameer Kolte[1], David Neihguk[1], Abhinav Prasad[1]
[1]Mahindra and Mahindra Ltd., Vehicle Integration COE, Mahindra Research Valley, Mahindra World City, Chengalpattu, Tamil Nadu, India

Structural analysis is performed to check the durability of Engine mounts for a given load and support conditions. The engine mount bracket is subjected to loads primarily due to weight of the powertrain and the unbalanced torque. In this analysis, the component is optimized such that stresses generated do not exceed the endurance strength of the material. In this paper, structural mechanics ...

Calculating the Fatigue Crack Initiation in Machine Parts under Random Multiaxial Loading

A. Nieslony[1], and C.M. Sonsino[2]
[1] Opole University of Technology, Department of Mechanics and Machine Design, Opole, Poland
[2] Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Darmstadt

The authors present a method for estimating fatigue life due to crack initiation using FEM under multiaxial random loading. The proposed method uses the multiaxial fatigue failure criteria based on the critical plane concept. Damages were determined with the spectral method from power spectral density (PSD) function of the equivalent stress history. The authors used linear-elastic ...

Design of a Miniaturized RF MEMS Based Single-Bit Phase Shifter

A. Chakraborty, A. Kundu, S. Chatterjee, and B. Gupta
Jadavpur University
Kolkata
West Bengal, India

This paper presents a novel design of single-bit RF MEMS phase shifter. The basic novelty introduced for phase shifter design in this case, is by scaling down of the lateral dimensions of the conventional RF MEMS shunt switch by 10 times. The Mechanical and Electromechanical analysis of the designed miniature RF MEMS fixed-fixed beam is performed using COMSOL Multiphysics v.3.5a as an FEM ...

Quick Search

1 - 10 of 254 First | < Previous | Next > | Last