Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A non-Conventional use of COMSOL to Solve a Complex 3D Geometrical Problem

J. P. Caire, and F. Jomard
LEPMI, ENSEEG, Saint Martin d'Hères, France

The purpose of this study was the optimization of an industrial furnace from a thermal point of view. Such a cylindrical furnace contains an Al-Mg molten alloy covered by a KCl-NaCl molten salt layer floating on it to prevent alloy evaporation. When tilting the cylindrical furnace, it was necessary to compute the relation between the salt and alloy volumes and the area of the liquid alloy/salt ...

Pre-design of a Molten Salt Thorium Reactor Loop

J. P. Caire, and A. Roure
LEPMI-ENSEE, Saint Martin d'Hères, France

The generation 4 of molten salt reactors using the thorium cycle are characterized by a temperature close to 1000 oC. The very large heat transfers involved between the reactor core and the external parts with minimal thermal losses are a major issue. This study investigated a possible inner loop made of a series of conventional graphite filter plate exchangers, pipes and pumps, using the COMSOL ...

Simulation-based Analysis of the Spatial Sensitivity Function of an Electrical Capacitance Tomography System

A. Fuchs, and H. Zangl
Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Graz, Austria

This paper investigates the effects of the soft field character of an Electrical Capacitance Tomography system by means of analyzing the 3D sensitivity distribution of the pipe interior using Finite Element Analysis.The aim of the determined sensitivity is to overcome restrictions caused by the soft field without being forced to use (active) guarding strategies.

Analysis of a Spatial Filtering Design for Capacitive Flow Measurements

D. Hrach, A. Fuchs, and H. Zangl
Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Graz, Austria

In this paper, a simulation of a capacitive flowmeter utilizing a spatial filtering technique is presented. The flowmeter consists basically of ring shaped electrodes placed sequentially in the flow direction on the outside of a pipe. The paper introduces an electrode layout and describes the modeling of the electrodes to achieve the required simulation accuracy.We show the functionality of the ...

Resonating with Students in the Undergraduate Physics Laboratory: Comprehending Acoustic Vibrations

K. Stein, R. Peterson, J. Houlton, J. Knapp, B. Peplinski, C. Scheevel, and D. Swenson
Department of Physics, Bethel University, St. Paul, MN, USA

Acoustic vibrations are studied for several objects through the application of computational and optical diagnostic techniques. Computational studies are carried out using the eigenfrequency analysis option in the COMSOL structural mechanics application mode, whereas experimental optical studies utilize real-time stroboscopic holography. The two approaches provide complementary descriptions ...

Modeling of snRNP Motion in the Nucleoplasm

M. Blaziková[1], J. Malínský[2], D. Stanek[3], and P. Herman[1]
[1]Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
[2]Institute of Experimental Medicine, Prague, Czech Republic
[3]Institute of Molecular Genetics, Prague, Czech Republic

Small nuclear ribonucleoprotein particles (snRNPs) are essential supramolecular complexes involved in pre-mRNA splicing, the process of post-transcriptional RNA modifications. The particles undergo complex assembly steps inside the cell nucleus in a highly dynamic compartment called the Cajal body. We have previously shown that the free diffusion model does not fully describe the snRNP motion ...

Development of an Interlinked Curriculum Component Module for Microchemical Process Systems Components Using COMSOL Multiphysics

A. Mokal, and P. Mills

Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

COMSOL Multiphysics provides a powerful numerical platform where various models for microchemical process technology components can be readily created for both education and research. This modeling tool allows chemical engineering students to focus on understanding the effects of various microchemical system component design and operational parameters versus coding and debugging of the numerical ...

Finite Element Analysis of Multiconductor Interconnects in Multilayered Dielectric Media

S. Musa and M. Sadiku
College of Engineering, Prairie View A&M University, Prairie View, TX, USA

Due to the complexity of electromagnetic modeling, researchers and scientists always look for development of accurate and fast methods to extract the parameters of electronic interconnects and package structures. In this paper, we illustrate modeling of multiconductor interconnects in multilayered dielectric media using COMSOL Multiphysics and the finite element method. We specifically determine ...

A Model of a Horizontal Atmospheric Pressure Chemical Vapor Deposition Reactor

T. Adams

Naval Surface Warfare Center Crane Division, CRANE, IN, USA

A model of a horizontal atmospheric pressure chemical vapor deposition reactor was implemented to aid in the design of a laboratory based one. The model coupled momentum transport, energy transport, and mass transport phenomena to account for reacting fluid flow of a compressible gas in a heated chamber. The system modeled was silicon deposition from trichlorosilane in hydrogen carrier gas.

Numerical Modelling of Electrophoresis Applied to Restoration of Archaeological Organic Materials

J. Caire[1], A. Bouh[1], and E. Guilminot[2]
[1]LEPMI, UMR 5631, INPG - CNRS, Saint Martin d’Hères, France
[2]EPCC, Arc'Antique, Nantes, France

Restoration of archaeological materials from oceans is a major activity of Arc’ Antique. Organic materials such as wood, tissues, leathers, papers and ceramics found in sea water are always impregnated with salts. Rinsing such archaeological objects with pure water to extract the salts takes too long, so electrophoresis was used to improve the salt extraction. The objective of this ...

Quick Search

2711 - 2720 of 3230 First | < Previous | Next > | Last