Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Dynamic Deformation of Soft Particle in Dual-trap Optical Tweezers

Y. Sheng[1], S. Rancourt-Grenier[1], P. Bareil[1], P. Duval[1], M. Wei[2], A. Chiou[2], and J. Bai
[1]University Laval, Quebec, QC, Canada
[2]National Yang-Ming University, Taipei, Taiwan

A dual-trap optical tweezers is used for deforming the red blood cell (RBC) in suspension and studying its elasticity. The 3D deformation of the cells was computed with the elastic membrane theory. The calculated deformation can fit to experimental data resulting in cell’s elasticity coefficient. The static approach is valid only for small deformation (5-10%). For a large deformation such as ...

Numerical Modeling Of Thin Superconducting Tapes

F. Grilli[1], F. Sirois[2], and R. Brambilla[3]
[1]Karlsruhe Institute of Technology, Karlsruhe, Germany
[2]Ecole Polytechnique de Montréal, Montréal, Canada
[3]ERSE SpA, Milan, Italy

Second-generation high-temperature superconducting (HTS) tapes are very promising superconductors for ac applications and numerical models are very important for predicting their performance, e.g. for computing the ac losses. These tapes are characterized by a very large aspect ratio: the width of the superconducting film is typically between 4 and 12 mm, whereas its thickness is in the ...

Modelling of Transport Phenomena and Effect of Applied Electrical Field on Heavy Metals Recovery during Application of the Electro-remediation Process

A. Mahmoud, and J. Beaugrand
Laboratoire de Thermique Energétique et Procédés, ENSGTI, Pau, France

A mathematical model for the simulation of contaminant such as heavy metals removal from soils by electric fields was performed in a 2-D geometry using COMSOL Multiphysics. Electrokinetic phenomena is the result of the coupling between hydraulic and electrical potential gradients in fine grained soils. The model describes the coupled transport of mass and charge of species subjected to an ...

Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with COMSOL

A.T. Vermeltfoort, and J. van Schijndel
Eindhoven University of Technology, the Netherlands

The tensile strength of masonry is relatively low compared to its compressive strength and is affected by the direction of the joints and their filling. In masonry with modern thin layer mortar (joint thickness 3 to 5 mm) sometimes the head joints are left open. A total of 13 model-walls was built and for each model four general purpose mortar combinations and three thin layer mortar combinations ...

Computational Building Physics using Comsol: Research, Education and Practice

J. van Schijndel
Eindhoven University of Technology,
Eindhoven, The Netherlands

Jos van Schijndel completed his MSc in 1998 at the Department of Applied Physics at the Eindhoven University of Technology (TUe). In 2007 he obtained a PhD degree at the TUe on integrated heat, air and moisture modeling. Currently, he is assistant professor focusing on Computational Building Physics. His passion is creative computational modeling using state of art scientific software and ...

Design and Development of Microsystems within a Corporate Research Environment by Utilizing Comsol Multiphysics

A. Frey
Siemens AG
Corporate Research & Technologies
Munich, Germany

Alexander Frey received his M.A. degree from the University of Texas, Austin, in 1994, the Dipl. Phys. degree from the University of Wuerzburg, Germany in 1997 and the PhD from the Saarland University, Germany in 2010. In 1997 he joined Research Laboratories of Siemens working on the design of DRAM sensing circuits. In 1999 he joined Corporate Research, Infineon, Munich, Germany. He was engaged ...

Multi-Domain Analysis of Silicon Structures for MEMS Based-Sensors

N. Bhalla[1], S. Li[2], and D. Chung[1]
[1]Chung Yuan Christian University, Chungli,Taiwan
[2]National Tsing Hua University, Hsinchu, Taiwan

Investigation in this paper aims at performing Mechanical Stress Strain analysis, Thermal, Piezoresistive and Piezoeletric analysis of Silicon Structures using COMSOL. The simulation results have been cross checked by mathematical calculation.

Simplified Numerical Model of an Axial Impeller

A.-M. Georgescu[1], S.-C. Georgescu[2]
[1]Hydraulics and Environmental Protection Department, Technical University of Civil Engineering, Bucharest, Romania
[2]Hydraulics Department, University “Politehnica”, Bucharest, Romania

We propose a simplified numerical method to model the flow field downstream of an axial impeller. The method can be used for any axial hydraulic machinery for which, one is less interested by the flow between the blades, than by the flow field downstream of the machinery. The method is applied to an axial fan for which the pressure - flow rate curve is available. Numerical results are obtained ...

Multiphysics Modeling of a Metal Foam

B. Chinè [1][3], M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy
[3]Instituto Tecnologico de Costa Rica, Cartago, Costa Rica

Introduction: In metal foams production, nucleated gas bubbles expand in a heated metal in a mold, then the foam cool and solidify. Thereby energy, mass and momentum transfer mechanisms are present simultaneously in the system and must be taken into account. Metal foam (Figure 1) can be obtained by foaming a precursor, i.e. a mixing of aluminum (Al) powders with the blowing agent TiH2, placing it ...

Upscaling of Heterogeneous Rock Properties via a Multiscale Image to Simulation Approach

S. Zhang[1], M. Pal[2], P. Barthelemy[1], M. Lei[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Shell International Exploration and Production, Rijswijk, The Netherlands

The mass and recoverability of oil and gas in unconventional reservoirs strongly depend on the understanding the petrophysical properties of the rocks at a large range of scales. Three-dimensional imaging is capable of unveiling the detailed microstructures within the rocks down to the nanometer scale. Using a multiscale imaging protocol, a Devonian shale rock sample with heterogeneities is ...

Quick Search

2681 - 2690 of 3230 First | < Previous | Next > | Last