Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Upscaling of Heterogeneous Rock Properties via a Multiscale Image to Simulation Approach

S. Zhang[1], M. Pal[2], P. Barthelemy[1], M. Lei[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Shell International Exploration and Production, Rijswijk, The Netherlands

The mass and recoverability of oil and gas in unconventional reservoirs strongly depend on the understanding the petrophysical properties of the rocks at a large range of scales. Three-dimensional imaging is capable of unveiling the detailed microstructures within the rocks down to the nanometer scale. Using a multiscale imaging protocol, a Devonian shale rock sample with heterogeneities is ...

Thermal Analysis of Packaged Deep Ultraviolet LEDs

A. Dobrinsky[1], M. Shatalov[1], M. Shur[1], R. Gaska[1]
[1]Sensor Electronic Technology, Columbia, SC, USA

Deep Ultraviolet Light Emitting Diodes (DUV LEDs) are presently operating at a relatively low efficiency, thus large amount of LED driving power is dissipating in heat. Thermal heating degrades LED performance and decreases LED’s lifetime. The degradation of DUV LED devices with temperature increase makes thermal management a key issue for DUV LEDs. We present a thermal analysis of DUV LED ...

Singlet Oxygen Modeling of BPD Mediated-PDT Using COMSOL

T.C. Zhu[1], B. Liu[1], X. Liang[1]
[1]University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during photodynamic therapy (PDT). A previously developed model that incorporates the diffusion equation for the light transport in tissue and the macroscopic kinetic equations for the generation of the singlet oxygen, can be used to numerically calculate the distance-dependent reacted 1O2 using finite-element method (FEM). The formula of reacted ...

Accelerating R&D with COMSOL: A Personal Account

Erik Birgersson[1]

[1]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore

This presentation gives an account of how COMSOL Multiphysics® software has helped to accelerate research and development. It has been used to simulate energy systems such as fuel cells, biomedical systems such as hydrogels and human skin, and monolithic catalytic converters. Each of these systems requires a mathematical model that can accurately represent the relevant physics, and which can be ...

Early Breast Cancer Detection using Patient Symptomatic Breast Images by Finite Element Analysis Aided by COMSOL

Tan Ming Sien[1]
Devendran Perumal[1]
Sri Pooveyninthran[1]
Samavedham Lakshminarayanan[2]
Balu Ranganathan[3]

[1]Department of Chemical and Natural Resources Engineering, University of Malaysia Pahang, Pahang, Malaysia
[2]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
[3]Center for Excellence for Fluid Flow Research, University of Malaysia Pahang, Pahang, Malaysia

In this project, we attempted to determine the drug concentration in a breast cancer tumor after a drug has been delivered. We created a COMSOL Multiphysics® finite element model. We investigated the relationship between drug delivery efficiency and parameters such as diffusivity, deepness of the tumor, and the temporal and spatial placement of the transdermal patch that delivers the drug. We ...

Biological Effects and Therapeutic Applications of Electromagnetic Radiations

A. Singh[1], S. Maini[1], and M. Anupma[1]
[1] Department of Electrical & Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology , Longowal (Deemed University), Punjab, India

The electromagnetic fields have a great influence on the behavior of all the living systems. The human body itself is a source of naturally generated electric and magnetic fields. When external signals of comparable strength flows through the human body; the nature of changes that such signals could induce in natural electrochemical processes and voltage is a subject of interest and of ...

Numerical Study of an LTD Stirling Engine with Porous Regenerator

N. Martaj[1], P. Rochelle[1][2], L. Grosu[1], R. Bennacer[3], and S. Savarese[4]
[1]Universitè de Paris, Paris, France
[2]Institut Jean Le Rond d'Alembert, Université Paris 6
[3]Laboratoire LEEVAM «Environnement, Energétique, Valorisation, Matériaux», Universitéde Cergy-Pontoise
[4]COMSOL France, 5 pl. R Schuman, 38000 Grenoble

The alternative engines of Stirling type, are engines running on "hot air", using both an external heat source and regeneration. They should be considered as an alternative for the effective conversion of renewable energy sources into work, with their theoretical yield equal to the theoretical Carnot limit. The output efficiency and the power of these engines are strongly related to the ...

Thermal Stability of an HTS AC Armature Winding

Morega, A.M.1, Ordonez, J.C.2
1 Department of Electrical Engineering, POLITEHNICA University of Bucharest, Bucharest, Romania
2 Department of Mechanical Engineering and Center for Advanced Power Systems, Florida State University, Tallahassee, FL

The armature of a High Temperature Superconductor (HTS) motor is usually an AC copper air winding mounted in an iron-less stator. This unconventional winding is the siege of intense power dissipation by Joule and variable magnetic field effects, and has to be thoroughly designed to provide for the thermal stability of the HTS motor. For a more detailed knowledge of the thermal field beyond ...

Charakterisierung einer magnetorheologischen Flüssig-keit für die Innenhochdruck-Umformung von Rohren

Dal Bó, P., Blankl, A., Geiger, M.
Universität Erlangen-Nürnberg, Lehrstuhl für Fertigungstechnologie, Erlangen, Deutschland

Bei der Innenhochdruck-Umformung von Rohren findet die Umformung durch eine Kombination aus Aufweiten und Stauchen statt. Aufgrund des Innendrucks und der daraus resultierenden Reibung zwischen Werkzeug und Werkstück erfolgt bei einem sehr langen Rohr kein weiteres Nachschieben in die Aufweitzone, sondern lediglich ein Aufstauchen in der Führungszone. Mit Hilfe der Strömung eines hochviskosen ...

Flow behaviour of phosphorus-deoxidised copper in plane-strain hot extrusion

Jin, L.Z.1, Ssemakula, H.2, Sandström, R.1
1 Department of Materials Science and Engineering, Royal Institute of Technology, Sweden
2 Department of Production Engineering, Royal Institute of Technology, Sweden

Flow behaviour of phosphorus-deoxidised copper in plane-strain hot extrusion with an insertion in the die has been studied through a finite-element model consisting of fluid dynamics and heat transfer approaches. The billet material is considered as rigid-visco-plastic and rate-sensitive. A dynamic viscosity, which is strain-rate and temperature dependent, has been integrated into the model. ...

Quick Search

2681 - 2690 of 3379 First | < Previous | Next > | Last