Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

K. Daneshvar[1], A. Fantino[1], C. Cristiani[1], G. Dotelli[1], R. Pelosato[1], M. Santarelli[2]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
[2]Politecnico di Torino, Dipartimento di Energetica, Torino, Italy

A 2D isothermal axisymmetric model of an anode-supported Solid Oxide Fuel Cell (SOFC) has been developed. Also a parametric analysis to find the effect of important parameters on the cell performance has been done. This simulation has been carried out at 1 atm and 1073 K. The PEN materials are traditional ones: Ni-YSZ/YSZ/LSM-YSZ as anode, electrolyte and cathode respectively.The developed model ...

Symmetric Stack Model of a Molten Carbonate Fuel Cell (MCFC) with Indirect Reforming

M. Pfafferodt[1], P. Heidebrecht[2], and K. Sundmacher[1,2]
[1]Otto-von-Guericke-University, Magdeburg, Germany
[2]Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

A model of a Molten Carbonate Fuel Cell (MCFC) stack with internal reforming is presented.  It describes the concentrations in the gas phase, the temperatures and the current densities in this highly integrated system. The differential equations, boundary conditions and the coupling equations used in the model are presented. A strategy to solve the system of partial differential ...

Modeling the Effect of Discrete Distributions of Platinum Particles in the PEM Fuel Cell Catalyst Layer

C.F. Cetinbas[1], A.K. Prasad[2], S.G. Advani[1]
[1]Center for Fuel Cell Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]University of Delaware, Newark, DE, USA

In this study, the basic catalyst layer (CL) structure, consisting of carbon-supported Pt particles (C|Pt) and an ionomer binder, is investigated numerically by using COMSOL. The significance of modeling discrete Pt particles on the carbon support is highlighted by comparing the cell performance results to the case in which the Pt is assumed to be distributed uniformly over the carbon support as ...

Diffusion-controlled Redox Cycling at Nanoscale Interdigitated Electrodes

Yang, X.1, Zhang, G.1, 2, 3
1 Micro/Nano Bioengineering Laboratory, Department of Biological and Agricultural Engineering
2 Nanoscale Science and Engineering Center
3 Faculty of Engineering, The University of Georgia, Athens, GA 30602, USA

Diffusion controlled redox cycling behavior at nanoscale interdigitated electrodes (IDEs) was simulated using FEMLAB. Cyclic voltammograms were obtained for IDEs with various sizes and spacing, and current collection efficiency and cycling number were calculated. We found that as the size of the IDEs decreased, the shape of the voltammogram changed from a peak-shaped curve to a sigmoidal ...

A Model for Panar Self-breathing Proton Exchange Membrane Fuel Cells in FEMLAB

Ziegler, C., Tranitz, M., Schumacher, J.O.
Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany

A mathematical model of planar self-breathing fuel cells is developed and validated. The geometry of the model is a two-dimensional symmetric element of a planar self-breathing fuel cell. The multicomponent transport of the species is considered as well as the couplings between the transport processes of heat, charge, and mass, and the electrochemical reactions. The cell model is validated ...

Modellierung von Dünnschichtzellen Thin Layer Flow Cell Modelling

E. Holzbecher[1], J. Fuhrmann[1], R. Halseid[2], and R.J. Behm[2]
[1] WIAS, Numerische Analysis, Berlin
[2] Universität Ulm, Ulm

Two designs for thin layer flow cells were set up at University of Ulm, Germany, in order to identify parameters describing the kinetics of methanol-oxydation – reactions, to be utilized in fuel cells. Computer models for two designs were constructed using COMSOL Multiphysics. Results from the numerical simulations were used to evaluate the different flow cell designs. The aim to ...

A Non-isothermal Modeling of a Polymer Electrolyte Membrane Fuel Cell

H. Shin[1]

[1]Department of Mechanical Engineering, University of Michigan – Ann Arbor, Michigan, USA

Polymer electrolyte membrane (PEM) fuel cells have attracted attention as an alternative power source in various applications such as vehicles, portable supplies, and stationary power systems. A non-isothermal PEM fuel model is developed and simulated by using COMSOL Multiphysics. Although PEM fuel cells have been expected to be extensively used as an alternative power source, there have been ...

FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM)

R. Hamou, P. Biedermann, M. Rohwerder, and A. Blumeneau
Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

The present work focuses on modeling a new experimental technique: Scanning Electro-chemical Potential Microscopy (SECPM), which is used to probe the potential profile of the electric double layer (EDL). We used an electrostatic approach to compute the EDL potential measured within the metallic probe. Also, we investigated the effect of the interaction of the electrode/probe double layers on the ...

Steady-state simulation of mono-valent ion distributions within a nanofluidic channel

W. Booth[1], J. Schiffbauer[1], J. Fernandez[2], K. Kelley[3], A. Timperman[3], and B. Edwards[1]

[1]Physics Department, West Virginia University, Morgantown, WV, USA
[2]Chemical Engineering Department, West Virginia University, Morgantown, WV, USA
[3]Chemistry Department, West Virginia University, Morgantown, WV, USA

The steady-state non-equilibrium distributions of two species of mono-valent ions around a charged nanofluidic channel have been examined. Large reservoirs were placed on either side of the nanoscale channel to simulate bulk concentration of ions in a fluid. Results from COMSOL Multiphysics simulations show that the effect of the potential bias across the nanochannel yields a significant ...

Study of Hydrogen Release from a Metal Hydride Bed

K. Song[1], and H. Knickle[1]

[1]Department of Chemical Engineering, University of Rhode Island, Kingston Rhode Island, USA

In this paper we present a study of the time dependent analysis of a metal hydride bed (MHB) which provides constant flow to a fuel cell at required power loading and pressure. The hydrogen gas phase pressure, the hydrogen concentration in the metal hydride and the hydrogen desorption rate are consider as key variables in this study. Both the space scale and time scale analysis are performed. ...

Quick Search