Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Anisotropic Suede-like Material During the Thermoforming Process

G.Lelli[1], M. Pinsagli[1] , and E. di Maio[2]
[1]Alcantara S.p.A. (Application Development Center), Nera Montoro, Italy
[2]University of Naples "Federico II" (Department of Materials and Production Engineering), Naples, Italy

Physical and mechanical studies of Alcantara® have shown very pronounced anisotropic nonlinear features. Using constitutive equations borrowed from the modelling of biological tissues like tendons and/or arteries under the form of hyperelastic free-energy functions, a good representation of such mechanical features can be obtained. In particular, a combination between the optimization module ...

Experimental and Numerical Study of Microbial Improved Oil Recovery in a Pore Scale Model by using COMSOL

M. Shabani Afrapoli, L. Shidong, S. Alipour , and O. Torsaeter
Department of Petroleum Engineering and Applied Geophysics
NTNU
Trondheim, Norway

A number of visualization experiments are carried out at the laboratory temperature with oil, brine and bacteria suspension for evaluating the performance of MIOR in a glass micromodel. The observations show the effects of bacteria on remaining oil saturation. The interfacial tension reduction, wettability alteration and flow pattern changes are recognized as active mechanisms. COMSOL ...

Improved Finite Element Modeling of Heat and Mass Transfers in Single Corn Kernels During Drying

A. J. Kovacs, and M. Nemenyi
University of West Hungary
Institute of Biosystems Engineering
Mosonmagyarovar
GYMS, Hungary

Our Institute at the West Hungarian University is dealing with modelling of heat physical treatments in agricultural (biological) materials. The essential key in order to gain accurate results is to know the driving forces during heat and mass transfers. In case of mass transfer processes the application of moisture gradient as driving force gives false results. Therefore, we use water potential ...

The Microplane Model for Concrete in COMSOL

A. Frigerio
RSE S.p.A.
Milan, Italy

The safety of large civil structures is often evaluated by means of numerical models based on the Finite Element Method. In this frame, the choice of a constitutive law able to represent the complex mechanical behaviour of concrete is a key point. This paper deals with a detail description of all the steps needed to implement the Microplane Model in COMSOL; the formulation is based on the ...

FEM Simulations of Rod-Type Photonic Crystal Slabs as Resonant Microsystems for Optical Gas Sensors

C. Kraeh, and H. Hedler
Siemens AG, Munich
Munich, Germany

We are developing a solid state gas sensor that combines a small form factor with the high sensitivity of optical gas detection. The gas sensor is based on an optical resonant microsystem that is penetrated by gas molecules. This microsystem consists of an array of vertical rods in air forming a photonic crystal. Light propagates through the photonic crystal along a line defect waveguide. For ...

Verification and Validation of Flow and Transport Processes in Fractured Porous Media

J. Perko, S. C. Seetharam, and D. Mallants
Belgian Nuclear Research Centre
SCK-CEN, Belgium

Knowledge of the effect of fractures on fluid flow and transport is of great interest in many fields. In radioactive waste disposal the interest in fractures within concrete structure is because they are mostly more permeable than the matrix, there is less or no sorption and because long-term chemical concrete degradation could progress faster. Assessment of long-term transport processes is ...

On the Simulation of the Lightning Strikes to Complex Grounded Structures

M. Becerra
Royal Institute of Technology
School of Engineering
Electromagnetic Engineering Lab
Stockholm, Sweden

There is a considerable world-wide interest among lightning protection engineers and designers on the improvement of the standard procedures to assess the location of the most vulnerable places on complex structures to be struck by lightning flashes. This paper presents the implementation of the Self-consistent Lightning Interception Model in Matlab by using the COMSOL Multiphysics 3.5 ...

Expert System for Synchronous Machines Based on COMSOL Multiphysics

G. E. Stebner, and C. Hartwig
Ostfalia University
IMEC
Wolfenbüttel, Germany

Even though the researches in synchronous machines are advanced, the practical design still is a problem because of the complex interaction between several design parameters. The project “EaSync” at the Ostfalia University focuses on the bundling of machine models using COMSOL Multiphysics® to create a semi-automatic engineering process. The project is based on student research projects ...

Mass Transfer From a Rotating Cylinder in a Confined Gas Flow

N. Jand[1], A. Scarpetta[2], and M. Stefano[2]
[1]Chemical Engineering Department, University of L’Aquila, L’Aquila, Italy
[2]Faculty of Engineering, University of L'Aquila, L’Aquila, Italy

The modeling of sublimation form a rotating cylinder of solid naphthalene in a confined vessel has been performed by coupling the model of incompressible Newtonian fluid flow with the model of the dilute solutions. Preliminary a 2D axisymmetric system with swirl flow function for laminar and turbulent regimes has been considered. In the turbulent regime the RANS model with default parameter is ...

Numerical Modeling of Cold Crucible Induction Melting

I. Quintana[1], Z. Azpilgain[1], D. Pardo[2], and I. Hurtado[1]
[1]Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa, Spain
[2]Department of Applied Mathematics, Statistics, and Operational Research, University of the Basque Country (UPV/EHU), Leioa, Spain, and IKERBASQUE (Basque Foundation for Sciences), Bilbao, Spain

This paper describes a numerical solution method for the simulation of a cold crucible induction melting (CCIM) process involving the coupling of electromagnetic, temperature and turbulent velocity fields. During the CCIM process, the metal charge is contained on a water cooled segmented copper crucible, and the energy necessary to heat, melt, and overheat the charge is generated by an ...

Quick Search