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INTRODUCTION: In this work the Doyle-Fuller-Newman

(DFN) model, a physics-based pseudo-2D battery model

relaying on porous electrode and concentrated solution

theories [1, 2], is implemented in COMSOL Multiphysics.

The main objectives are:

* Model parameters identification of a commercial
lithium-ion battery including cross-validation.

* Validation of model simplifications capable to run on
Battery Management Systems (BMSs) in real-time.
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Figure 1. Pseudo-2D physics-based battery model (a) and detailed
illustration of the spherical particle model (b)

Governing Equations: The model is solved stationary,
in time and frequency-domain with COMSOL
Multiphysics and the Batteries & Fuel Cells Module.
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Lithium transfer
between the solid and
liquid phases (Butler-
Volmer equation)
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Parameter Grouping and Sensitivity Analysis:
The influence of individual parameters on the model
output is investigated for three groups:
* Geometric parameters = Li-ion battery geometry
* Thermodynamic parameters = equilibrium
* Kinetic parameters - dynamics
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Figure 2. Time-domain voltage response during sensitivity analysis (a),
frequency-domain impedance during sensitivity analysis (b) and parameter
ranking according to QR decomposition with column pivoting [3] (c)

Parameter Identification:
* Microstructure Analysis using optical microscope,

Scanning Electron Microscope (SEM) and performing
Energy dispersive X-ray spectroscopy (EDX).
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Figure 3. Optical microscopy to measure the layer thickness (a), SEM and ‘

* Open Circuit Voltage (OCV) model optimization

(thermodynamic parameters).
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Figure 4. Anode Open Circuit Potential (OCP) (a) Cathode OCP (b)
optimization function based on max and min lithium concentration (c)

and thermodynamic model validation with average OCV measurements (d)

* Model optimization (kinetic parameters: D,, D, k, g, ...).
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Figure 5. Model optimization with COMSOL LiveLink for Matlab (a) and the
multi-objective optimization problem with shared model parameters (b)

Model Validation: Dynamic drive cycles scaled consecutively

t

0 2C and 5C peak discharge current highlight an average

model estimation error lower than 18mV.
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Table 1. RMSE estimation error in mV for the
standardized dynamic drive cycles cross-validation

Figure 6. 5C UDDS
drive cycle @70% SOC

Simulation Results:

Simulation of non-measurable cell internal states.
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Figure 7. Simulation of solid phase potential (a), liquid phase potential (b)
and liquid phase salt concentration (c) for a complete 1C CC discharge cycle

Reduced order model validation with the DFN model e.g.
Single Particle Model (SPM) [4] represented in state-space.

8 P SPM
0365
8 45 . ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000
Time [s]

Figure 8. Cell voltage simulation of the SPM and the pseudo-2D model

CONCLUSIONS:
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image processing to determine the porosity, active volume fraction and particle ,

radius (b) and EDX to determine the coated electrode material composition (c)

Successful identification of physics-based battery model
parameters for a commercial lithium-ion battery.

Average model estimation RMSE over full SOC <18mV.
Validation of simulated states on simplified physics-based
battery models e.g. SPM in state-space intended for BMSs,
enabling fast charging and extending the battery life.
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