

Investigating the Impact of Substrate Composition on 3D Printed mmWave CSRR Sensor

Presenter: Jeevan Persad¹

Authors: Jeevan Persad, Sean Rocke, Aaron Roopnarine, Azim Abdool

1. Department of Electrical & Computer Engineering, The University of The West Indies, Trinidad & Tobago (Email: Jeevan.Persad@sta.uwi.edu)

Study Overview

This study models a 3D printed (3DP), mmWave, complementary split ring resonator (CSRR) sensor with varying percentage infill (1%) applied to the sensor's Nylon substrate. The sensor is intended for non-invasive blood glucose measurement (BGM). The resultant relative permittivity (ϵ_{eff}) of the sensor substrate was estimated using mixture models (MM). The predicted ϵ_{eff} were not in agreement, this produced a significant variation in the sensor model's performance. Results highlight the need for further work in identifying appropriate MMs for 3DP applications.

Background

- Noncommunicable diseases (NCDs) such as diabetes are a significant global socio-economic burden
- Constant blood glucose monitoring (BGM) is essential for diabetes care
- Non-invasive BGM provides superior patient comfort compared to BGM using blood samples (elderly and juveniles) [1]
- mmWave sensors are one method for non-invasive BGM [1]

Figure 1. Traditional blood glucose meter in use (Credit: IDF Diabetes Atlas 2019 ED)

Research Questions

What is the difference in the magnitude of the resultant relative permittivity (ϵ_{eff}) predicted by different heterogenous mixture models (MM)?

What are the magnitudes of the change in the CSRR sensor resonant frequency (f_r) and sensor S11 caused by the difference in the predicted ϵ_{eff} ?

Study Details – CSRR Sensor

- For this study a complementary split ring resonator (CSRR) mmWave sensor is utilised [2]
- To reduce cost the CSRR sensor is intended to be produced using 3D printing (3DP)
 - Reduced weight by varying substrate percentage infill
 - Improved flexibility
 - Ability to easily customise

Figure 2. Typical CSRR sensor structure

Study Details – CSRR Sensor

- CSRR sensor uses the perturbation cavity method [2]
- Changes in sensor substrate ϵ_{eff} produce a resultant change in the sensor resonant frequency (f_r)

$$f_r = \frac{1}{2\pi\sqrt{Lr(Cc + Cr)}}$$

Figure 3. mmWave CSRR dimensions (mm) and equivalent circuit

Study Details – Mixture Models (MM)

- Varying I% for a 3DP substrate considered as a binary heterogenous mixture
- Mixture models predict the equivalent properties e.g. ϵ_{eff}
- Two MMs considered:
 - Landau & Lifshitz, Looyenga (LLL) [3]-[4]

$$\left(\epsilon_{eff}\right)^{1/3} = v_1(\epsilon_1)^{1/3} + v_2(\epsilon_2)^{1/3}$$

Rayleigh (RAY) [5]

$$\frac{\epsilon_{eff} - \epsilon_1}{\epsilon_{eff} + 2\epsilon_1} = v_2 \frac{\epsilon_2 - \epsilon_1}{2\epsilon_1 + \epsilon_2}$$

 v_1 , ϵ_1 volume, relative permittivity Nylon v_2 , ϵ_2 volume, relative permittivity Air

Figure 4. Example rectangular I% (Credit: 3DHubs)

Model Set-up

Figure 5. Workflow of the modelling process

Model Set-up – Details

Item	Dimensions	Electrical Parameters
Microstrip	Trace width: 50 Ω	Perfect electric
	impedance matched	conductor
	Trace length: 30.0mm	
Substrate	15.0mm, 30.0mm, 0.8mm	σ = 10e-12 S/m
(Nylon)		ϵ_{eff} = set by mixture
		model calculation
Epidermis	15.0mm, 30.0mm, 1.0mm	σ = 1.8e-2 S/m
[6]		ϵ_r = 31
Air	Single layer sphere	
	Layer thickness: 10mm	
	Radius: 60mm	

Figure 6. Details of the CSRR model with tissue

Figure 7. Full simulation model showing the air domain

Results – Mixture Models

- The RAY mixture model generated higher values of ϵ_{eff} for all values of I%
- The greatest deviation between the two models was 0.08 at 50% I%

Predicted Permittivity Values vs Percentage Infill -- LLL --- RAY 3.5 Predicted Permittivity (ϵ_{eff}) 3.0 c 2. c 2. 1.0 30% 40% 60% 0% 20% 50% 70% 80% 90% 100% Percentage Infill (%)

Results – Reflection Coefficient (S11)

- For both MMs, S11 decreased as I% was increased from 10%
- The trend in S11 was nonlinear
- $\Delta \epsilon_{eff}$ produced variations in $\Delta S11$ (implementation margin)
- Overall, reduction in 1% leads to increased mmWave reflection
- The greatest difference in predicted S11 was 1.5dB

S11 for Varying Percentage Infill for Various Mixture Models

Results – Resonant Frequency (f_r)

- For both MMs, f_r increased as 1% was increased from 10%
- The trend in f_r was nonlinear
- Small $\Delta \epsilon_{eff}$ produced significant Δf_r
- The greatest difference in predicted f_r was 1.25GHz at 50% 1%

Resonant Frequency for Varying Percentage Infill for Various Mixture Models

Conclusion

- The CSRR sensor responds to variations in the ϵ_{eff} of the patient's tissue caused by changes in glucose concentration
- $\Delta \epsilon_{eff}$ produce a resultant Δf_r (in the order of GHz) for the CSRR sensor
- The variations in the MMs predictions for ϵ_{eff} can translate into significant errors in the manufactured sensor measurement of patient glucose
- Appropriate MMs for 3DP need to be identified
 - Build and test a significant number of 3DP samples
 - Further investigation of substrate tuning

www.fasove.com

THE UNIVERSITY OF THE WEST INDIES

sta.uwi.edu

References

- [1] W. Villena Gonzales, A. Mobashsher and A. Abbosh, "The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors," Sensors, vol. 19, no. 4, p. 800, (2019)
- [2] M. A. H. Ansari, A. K. Jha and M. J. Akhtar, "Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity," IEEE Sensors Journal, vol. 15, no. 12, pp. 7181-7189, Dec. (2015)
- [3] H. Looyenga, "Dielectric constants of heterogeneous mixtures," Physica, vol. 31, no. 3, pp. 401–406, (1965)
- [4] L. Landau, E. Lifšic and L. Pitaevskij, "Electrodynamics of continuous media," Amsterdam: Elsevier Butterworth-Heinemann, (2009)
- [5] L. Rayleigh, "Lvi. on the influence of obstacles arranged in rectangular order upon the properties of a medium," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 34, no. 211, pp. 481–502, (1892)
- [6] Niremf.ifac.cnr.it. 2020. Dielectric Properties Of Body Tissues: Home Page. [online] Available at: http://niremf.ifac.cnr.it/tissprop/ [Accessed 31 August 2020].