Transient Analysis of the Triggering Behaviour of Safety Fuses

Florian Loos¹, Hans-Dieter Ließ¹, Benoit Philippe²

¹Institute of Physics, Faculty for electrical and information technology *der Bundeswehr Universität München*

²ENSEA, Paris

26 October 2011

COMSOL Conference, Stuttgart

・ロト ・ 日 ・ ・ ヨ ・

- ② Experimental setup
- In Numerical model
- Omparison of measurements and simulation results
- 5 Further results
- Oncluding remarks and future work

- 4 同 1 - 4 日 1 - 4 日

2 Experimental setup

- Output: Numerical model
- Omparison of measurements and simulation results
- 5 Further results
- Oncluding remarks and future work

<日本

- Background information about safety fuses
- 2 Experimental setup
- Output Numerical model
- Omparison of measurements and simulation results
- 5 Further results
- Oncluding remarks and future work

<日本

- Background information about safety fuses
- 2 Experimental setup
- Output State Numerical model
- Comparison of measurements and simulation results
- 5 Further results
- 6 Concluding remarks and future work

(日) (同) (三) (1)

- Background information about safety fuses
- 2 Experimental setup
- Output State Numerical model
- Operation of measurements and simulation results
- Surther results
- Oncluding remarks and future work

- Background information about safety fuses
- 2 Experimental setup
- Output State Numerical model
- Operation of measurements and simulation results
- Surther results
- **O** Concluding remarks and future work

Image: Image:

- Permanent rise of the amount of electrical systems in today's automobiles and in parallel, lack of available space
- High temperatures in cables, connecting structures and other electrical car elements
- ightarrow Danger of overheating and irreparable damages
- ⇒ Function of safety fuses: Protection of the assemblies by in
 - (galvanic isolation)

- Permanent rise of the amount of electrical systems in today's automobiles and in parallel, lack of available space
- High temperatures in cables, connecting structures and other electrical car elements
- ightarrow Danger of overheating and irreparable damages
- ⇒ Function of safety fuses: Protection of the assemblies by interrupting the electric circuit (galvanic isolation)

- 4 周 ト - 4 日 ト - 4 日

- Permanent rise of the amount of electrical systems in today's automobiles and in parallel, lack of available space
- High temperatures in cables, connecting structures and other electrical car elements
- $\rightarrow\,$ Danger of overheating and irreparable damages
- ⇒ Function of safety fuses: Protection of the assemblies by interrupting the electric circuit (galvanic isolation)

- 4 周 ト - 4 日 ト - 4 日

- Permanent rise of the amount of electrical systems in today's automobiles and in parallel, lack of available space
- High temperatures in cables, connecting structures and other electrical car elements
- $\rightarrow\,$ Danger of overheating and irreparable damages
- ⇒ Function of safety fuses: Protection of the assemblies by interrupting the electric circuit (galvanic isolation)

Different types of safety fuses

Э

Experimental setup

・ロト ・聞と ・ヨト ・ヨト

Э

Determination of triggering curve

- Determination of triggering times with 120 % of nominal current up to 300 % in several steps
- Repetition of the measurement for each current three times and fitting of the average values
- Triggering curve of a fuse type:

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Determination of triggering curve

- Determination of triggering times with 120 % of nominal current up to 300 % in several steps
- Repetition of the measurement for each current three times and fitting of the average values
- Triggering curve of a fuse type:

イロト 不得下 イヨト イヨト

Determination of triggering curve

- Determination of triggering times with 120 % of nominal current up to 300 % in several steps
- Repetition of the measurement for each current three times and fitting of the average values
- Triggering curve of a fuse type:

Numerical model

- Heat in fuse generated by electrical current: Joule heating problem
- Given current I[A] determines an electric potential $U_0[V]$ whose magnitude depends on the material's characteristics, especially the resistance $R[\Omega]$
- Passage of electrical current through conductor releases heat due to resistive losses in material

- 4 周 ト - 4 日 ト - 4 日 ト

Numerical model

- Heat in fuse generated by electrical current: Joule heating problem
- Given current I[A] determines an electric potential $U_0[V]$ whose magnitude depends on the material's characteristics, especially the resistance $R[\Omega]$
- Passage of electrical current through conductor releases heat due to resistive losses in material

・ 同 ト ・ ヨ ト ・ ヨ

Numerical model

- Heat in fuse generated by electrical current: Joule heating problem
- Given current I[A] determines an electric potential $U_0[V]$ whose magnitude depends on the material's characteristics, especially the resistance $R[\Omega]$
- Passage of electrical current through conductor releases heat due to resistive losses in material

Governing equations

Heat equation

$$ho C_p \frac{\partial T}{\partial t} = k\Delta T + Q$$
 in Ω_{sol}

- k Heat conductivity $\left[\frac{W}{m \cdot K}\right]^{-1}$ Q Total power density $\left[\frac{W}{m^3}\right]$

<ロト < 団ト < 団ト < 団ト < 団ト

Governing equations

Heat equation

$$\rho C_p \frac{\partial T}{\partial t} = k\Delta T + Q \quad in \quad \Omega_{sol}$$

where

- Domain of solid material, $\Omega_{sol} \in \mathbb{R}^3$ Ω_{sol}
- Т Temperature [K]
- Time [s] t
- Density $\left[\frac{\text{kg}}{\text{m}^3}\right]$
- ρ C_p k Specific heat capacity $\begin{bmatrix} J \\ kg \cdot K \end{bmatrix}$
- Heat conductivity $\left[\frac{W}{m \cdot K}\right]$ Total power density $\left[\frac{W}{m^3}\right]$ Q

<ロト < 団ト < 団ト < 団ト

Governing equations

Heat equation

$$\rho C_p \frac{\partial T}{\partial t} = k\Delta T + Q \quad in \quad \Omega_{sol}$$

where

- Domain of solid material, $\Omega_{sol} \in \mathbb{R}^3$ Ω_{sol}
- Т Temperature [K]
- Time [s] t
- Density $\left[\frac{\text{kg}}{\text{m}^3}\right]$ ρ
- . C_p k Specific heat capacity $\left[\frac{J}{\text{kg}\cdot\text{K}}\right]$
- Heat conductivity $\left[\frac{W}{m \cdot K}\right]^{N}$ Total power density $\left[\frac{W}{m^3}\right]$, $Q = \frac{P}{V}$ Q

<ロト < 団ト < 団ト < 団ト < 団ト

Calculation of the total power density Q

Resistance loss U_0 in fuse element consisting of Cu and Sn

$$U_0 = I \cdot R = I \cdot \frac{\ell}{A} \cdot \rho_R = I \cdot \ell \cdot \frac{\rho_{Cu} \rho_{Sn}}{A_{Cu} \rho_{Sn} + A_{Sn} \rho_{Cu}}$$

Electrical power P generated in fuse element

$$P = U_0 \cdot I = I^2 \cdot \ell \cdot \frac{\rho_{Cu} \rho_{Sn}}{A_{Cu} \rho_{Sn} + A_{Sn} \rho_{Cu}}$$

Total power density Q in fuse element

$$Q = \frac{P}{V} = \frac{I^2}{A_{Cu} + A_{Sn}} \cdot \frac{\rho_{Cu} \rho_{Sn}}{A_{Cu} \rho_{Sn} + A_{Sn} \rho_{Cu}}$$

< 미 > < 部 > < 문 > < 문 >

Calculation of the total power density Q

Resistance loss U_0 in fuse element consisting of Cu and Sn

$$U_0 = I \cdot R = I \cdot \frac{\ell}{A} \cdot \rho_R = I \cdot \ell \cdot \frac{\rho_{Cu} \rho_{Sn}}{A_{Cu} \rho_{Sn} + A_{Sn} \rho_{Cu}}$$

Electrical power P generated in fuse element

$$P = U_0 \cdot I = I^2 \cdot \ell \cdot \frac{\rho_{Cu} \rho_{Sn}}{A_{Cu} \rho_{Sn} + A_{Sn} \rho_{Cu}}$$

Total power density Q in fuse element

$$Q = \frac{P}{V} = \frac{I^2}{A_{Cu} + A_{Sn}} \cdot \frac{\rho_{Cu} \rho_{Sn}}{A_{Cu} \rho_{Sn} + A_{Sn} \rho_{Cu}}$$

< 미 > < 部 > < 문 > < 문 >

Calculation of the total power density Q

Resistance loss U_0 in fuse element consisting of Cu and Sn

$$U_0 = I \cdot R = I \cdot \frac{\ell}{A} \cdot \rho_R = I \cdot \ell \cdot \frac{\rho_{Cu} \rho_{Sn}}{A_{Cu} \rho_{Sn} + A_{Sn} \rho_{Cu}}$$

Electrical power P generated in fuse element

$$P = U_0 \cdot I = I^2 \cdot \ell \cdot \frac{\rho_{Cu} \rho_{Sn}}{A_{Cu} \rho_{Sn} + A_{Sn} \rho_{Cu}}$$

Total power density Q in fuse element

$$Q = \frac{P}{V} = \frac{I^2}{A_{Cu} + A_{Sn}} \cdot \frac{\rho_{Cu} \rho_{Sn}}{A_{Cu} \rho_{Sn} + A_{Sn} \rho_{Cu}}$$

▲ 御 ▶ ▲ 差 ▶ ▲ 差 ♪

Boundary conditions

Boundary condition solid material - air

$$k \frac{\partial T}{\partial n} = \alpha(T)(T_{env} - T)$$
 on Γ_{ex}

where

 $\begin{array}{ll} \Gamma_{ex} & \text{Exterior boundary} \\ \frac{\partial T}{\partial n} & \text{Normal derivative of } \mathcal{T}, \left[\frac{\mathrm{K}}{\mathrm{m}}\right] \\ \mathcal{T}_{env} & \text{Ambient temperature } \left[\mathrm{K}\right] \\ \alpha(\mathcal{T}) & \text{Heat transfer coefficient } \left[\frac{\mathrm{W}}{\mathrm{m}^{2}\cdot\mathrm{K}}\right] \end{array}$

Boundary conditions

Boundary condition solid material - air

$$k \frac{\partial T}{\partial n} = \alpha(T)(T_{env} - T)$$
 on Γ_{ex}

where

 $\begin{array}{ll} \Gamma_{ex} & \text{Exterior boundary} \\ \frac{\partial T}{\partial n} & \text{Normal derivative of } \mathcal{T}, \left[\frac{\mathrm{K}}{\mathrm{m}}\right] \\ \mathcal{T}_{env} & \text{Ambient temperature } \left[\mathrm{K}\right] \\ \alpha(\mathcal{T}) & \text{Heat transfer coefficient } \left[\frac{\mathrm{W}}{\mathrm{m}^{2}\cdot\mathrm{K}}\right] \end{array}$

Transient Analysis of the Triggering Behaviour of Safety Fuses

- High temperature-dependency and important influence to simulation results
- α consists of two parts: convection and radiation

 $\alpha = \alpha_{conv} + \alpha_{rad}$

• α_{conv} :

- \rightarrow Calculation via formulas obtained by fitting of empirical data
 - (i.e. Prandtl-Number, thermal extension coefficient of air,...)

• α_{rad} :

 \rightarrow Calculation according to Stefan-Boltzmann law with absolute temperatures T_{1K} and T_{2K} :

$$\alpha_{rad} = \epsilon \sigma (T_{1K}^2 + T_{2K}^2) (T_{1K} + T_{2K})$$

<ロ> (四) (四) (日) (日) (日)

- High temperature-dependency and important influence to simulation results
- $\bullet \ \alpha \$ consists of two parts: convection and radiation

$$\alpha = \alpha_{conv} + \alpha_{rad}$$

• α_{conv} :

- $\rightarrow\,$ Calculation via formulas obtained by fitting of empirical data $\rightarrow\,$ Dependency on a multitude of physical variables
 - (i.e. Prandtl-Number, thermal extension coefficient of air,...)

• α_{rad} :

 \rightarrow Calculation according to Stefan-Boltzmann law with absolute temperatures T_{1K} and T_{2K} :

$$\alpha_{rad} = \epsilon \sigma (T_{1K}^2 + T_{2K}^2) (T_{1K} + T_{2K})$$

- High temperature-dependency and important influence to simulation results
- α consists of two parts: convection and radiation

$$\alpha = \alpha_{conv} + \alpha_{rad}$$

• α_{conv} :

- → Calculation via formulas obtained by fitting of empirical data
 → Dependency on a multitude of physical variables

 (i.e. Prandtl-Number, thermal extension coefficient of air,...)
- α_{rad} :
 - \rightarrow Calculation according to Stefan-Boltzmann law with absolute temperatures T_{1K} and T_{2K} :

$$\alpha_{rad} = \epsilon \sigma (T_{1K}^2 + T_{2K}^2) (T_{1K} + T_{2K})$$

- High temperature-dependency and important influence to simulation results
- α consists of two parts: convection and radiation

$$\alpha = \alpha_{conv} + \alpha_{rad}$$

• α_{conv} :

- $\rightarrow\,$ Calculation via formulas obtained by fitting of empirical data
- → Dependency on a multitude of physical variables (i.e. Prandtl-Number, thermal extension coefficient of air,...)
- α_{rad} :

 \rightarrow Calculation according to Stefan-Boltzmann law with absolute temperatures T_{1K} and T_{2K} :

$$\alpha_{rad} = \epsilon \sigma (T_{1K}^2 + T_{2K}^2) (T_{1K} + T_{2K})$$

- High temperature-dependency and important influence to simulation results
- α consists of two parts: convection and radiation

$$\alpha = \alpha_{conv} + \alpha_{rad}$$

• α_{conv} :

- $\rightarrow\,$ Calculation via formulas obtained by fitting of empirical data
- → Dependency on a multitude of physical variables (i.e. Prandtl-Number, thermal extension coefficient of air,...)
- α_{rad} :
 - \rightarrow Calculation according to Stefan-Boltzmann law with absolute temperatures ${\cal T}_{1{\cal K}}$ and ${\cal T}_{2{\cal K}}$:

$$\alpha_{rad} = \epsilon \sigma (T_{1K}^2 + T_{2K}^2) (T_{1K} + T_{2K})$$

Initial conditions

Temperature at beginning t = 0

$$T(x,0) = T_{env}$$
 in Ω_{sol}

Transient Analysis of the Triggering Behaviour of Safety Fuses

臣

・ロト ・聞ト ・ヨト ・ヨト

Results of the simulation

臣

・ロト ・聞き ・ 国を ・ 国を

• Accordance of measurement results and simulations as main objective of our investigations

• Problem 1:

Is the heating of the fuse element until the melting point a unique indicator for the triggering of the fuse?

• Problem 2:

What is the exact melting point of a fuse element consisting of 60 % of copper (melting point $1083 \,^{\circ}C$) and 40 % of tin (melting point $231 \,^{\circ}C$)?

Comparison of simulation curves for different maximal temperatures in the fuse element with measurement results

★ 圖 ▶ | ★ 国 ▶ | ★ 国 ▶

- Accordance of measurement results and simulations as main objective of our investigations
- Problem 1:

Is the heating of the fuse element until the melting point a unique indicator for the triggering of the fuse?

• Problem 2:

What is the exact melting point of a fuse element consisting of 60 % of copper (melting point $1083 \,^{\circ}C$) and 40 % of tin (melting point $231 \,^{\circ}C$)?

Comparison of simulation curves for different maximal temperatures in the fuse element with measurement results

- Accordance of measurement results and simulations as main objective of our investigations
- Problem 1:

Is the heating of the fuse element until the melting point a unique indicator for the triggering of the fuse?

• Problem 2:

What is the exact melting point of a fuse element consisting of 60 % of copper (melting point $1083 \,^{\circ}C$) and 40 % of tin (melting point $231 \,^{\circ}C$)?

⇒ Comparison of simulation curves for different maximal temperatures in the fuse element with measurement results

・ 同 ト ・ ヨ ト ・ ヨ

- Accordance of measurement results and simulations as main objective of our investigations
- Problem 1:

Is the heating of the fuse element until the melting point a unique indicator for the triggering of the fuse?

• Problem 2:

What is the exact melting point of a fuse element consisting of 60 % of copper (melting point $1083 \,^{\circ}C$) and 40 % of tin (melting point $231 \,^{\circ}C$)?

⇒ Comparison of simulation curves for different maximal temperatures in the fuse element with measurement results

・ 同 ト ・ ヨ ト ・ ヨ

Calculated and measured triggering curves

(日) (四) (三) (三)

\rightarrow Triggering times simulation \leq triggering times measurements

- \rightarrow Possible reasons for this tendency:
 - Exact melting temperature of fuse element unknown
 - 2 Latent heat: further energy needed to melt material
 - 3 Neglect of heat dissipating via attached cables
- \rightarrow Good accordance of simulation and measurement for supposed melting temperature of 730 $^{\circ}\mathrm{C}$ (= melting temperature of copper-tin-alloy)

- 4 周 ト 4 ヨ ト 4 ヨ ト

$\rightarrow\,$ Triggering times simulation \leq triggering times measurements

\rightarrow Possible reasons for this tendency:

- Exact melting temperature of fuse element unknown
- 2 Latent heat: further energy needed to melt material
- Output to the set of the set o
- \rightarrow Good accordance of simulation and measurement for supposed melting temperature of 730 °C (= melting temperature of copper-tin-alloy)

- 4 周 ト 4 ヨ ト 4 ヨ ト

- $\rightarrow\,$ Triggering times simulation \leq triggering times measurements
- \rightarrow Possible reasons for this tendency:
 - Exact melting temperature of fuse element unknown
 - 2 Latent heat: further energy needed to melt material
 - In the second second
- \rightarrow Good accordance of simulation and measurement for supposed melting temperature of 730 $^{\circ}\mathrm{C}$ (= melting temperature of copper-tin-alloy)

- 4 同 1 - 4 日 1 - 4 日

- $\rightarrow\,$ Triggering times simulation \leq triggering times measurements
- \rightarrow Possible reasons for this tendency:
 - Exact melting temperature of fuse element unknown
 - 2 Latent heat: further energy needed to melt material
 - 3 Neglect of heat dissipating via attached cables
- \rightarrow Good accordance of simulation and measurement for supposed melting temperature of 730 $^{\circ}\mathrm{C}$ (= melting temperature of copper-tin-alloy)

・ロト ・ 御 ト ・ ヨ ト ・ 日

- $\rightarrow\,$ Triggering times simulation \leq triggering times measurements
- \rightarrow Possible reasons for this tendency:
 - Exact melting temperature of fuse element unknown
 - 2 Latent heat: further energy needed to melt material
 - Solution State A state of the state of th
- \rightarrow Good accordance of simulation and measurement for supposed melting temperature of 730 $^{\circ}\mathrm{C}$ (= melting temperature of copper-tin-alloy)

・ロト ・ 御 ト ・ ヨ ト ・ 日

- $\rightarrow\,$ Triggering times simulation \leq triggering times measurements
- \rightarrow Possible reasons for this tendency:
 - Exact melting temperature of fuse element unknown
 - 2 Latent heat: further energy needed to melt material
 - O Neglect of heat dissipating via attached cables
- $\rightarrow\,$ Good accordance of simulation and measurement for supposed melting temperature of 730 $^{\circ}\mathrm{C}$ (= melting temperature of copper-tin-alloy)

- 4 同 1 - 4 日 1 - 4 日

Application of COMSOL simulation to test external and design influences regarding triggering behaviour:

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

 $\rightarrow\,$ Experimental setup and numerical simulation for triggering behaviour of safety fuses

- $\rightarrow\,$ Influence of different materials and plastic housing shown exemplarily
- \rightarrow Future work:
 - Measurements for the temperature of the fuse element and the attached cables
 - Improve simulation by integrating the influence of attached cables, chemical reactions taking place for lower loads over longer periods and exact knowledge when electric circuit interrupts

米部ト 米国ト 米国ト

- $\rightarrow\,$ Experimental setup and numerical simulation for triggering behaviour of safety fuses
- $\rightarrow\,$ Influence of different materials and plastic housing shown exemplarily
- \rightarrow Future work:
 - Measurements for the temperature of the fuse element and the attached cables
 - Improve simulation by integrating the influence of attached cables, chemical reactions taking place for lower loads over longer periods and exact knowledge when electric circuit interrupts

- 4 周 ト 4 ヨ ト 4 ヨ ト

- $\rightarrow\,$ Experimental setup and numerical simulation for triggering behaviour of safety fuses
- $\rightarrow\,$ Influence of different materials and plastic housing shown exemplarily
- \rightarrow Future work:
 - Measurements for the temperature of the fuse element and the attached cables
 - Improve simulation by integrating the influence of attached cables, chemical reactions taking place for lower loads over longer periods and exact knowledge when electric circuit interrupts

- $\rightarrow\,$ Experimental setup and numerical simulation for triggering behaviour of safety fuses
- $\rightarrow\,$ Influence of different materials and plastic housing shown exemplarily
- \rightarrow Future work:
 - Measurements for the temperature of the fuse element and the attached cables
 - Improve simulation by integrating the influence of attached cables, chemical reactions taking place for lower loads over longer periods and exact knowledge when electric circuit interrupts

- $\rightarrow\,$ Experimental setup and numerical simulation for triggering behaviour of safety fuses
- $\rightarrow\,$ Influence of different materials and plastic housing shown exemplarily
- \rightarrow Future work:
 - Measurements for the temperature of the fuse element and the attached cables
 - Improve simulation by integrating the influence of attached cables, chemical reactions taking place for lower loads over longer periods and exact knowledge when electric circuit interrupts

Thank you for your attention!

Transient Analysis of the Triggering Behaviour of Safety Fuses

(日) (四) (三) (三)