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Abstract: A major tool for understanding 

thermal convection in the Earth’s mantle is 

numerical modeling. To solve Boussinesq 

equations a finite element code has been 

applied. This is the first time this method has 

been used in Hungary, namely, modeling 
mantle convection on the Cartesian coordinate 

system. The simulations have been run in 2D 

Cartesian and cylindrical coordinate systems 

as well as in a “mantle-like” cylindrical-shell. 

The mantle dynamics are controlled by the 

Rayleigh number, which is the ratio of the 

buoyancy to viscous forces. The effect of Ra 

has been studied in the range of 1e4 to1e7. The 

significance of the cylindrical geometry is that 

at a given rms velocity the convection can 

carry the most heat to the surface and the 
results were close to the three dimensional 

case. This may imply that the upwelling part of 

the 3D mantle convection is cylindrical 

(mantle plume). In the cylindrical-shell domain 

an impressive approximate picture of the 

chaotic structure of the mantle convection has 

been shown. With the comparison of the three 

geometries it could be said that the cylindrical 

coordinate-system seems to be the most 

appropriate geometry to investigate the 

physical properties of an individual mantle 
plume.     
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1. Introduction 
 

A major tool for understanding thermal 

convection in the Earth’s mantle is numerical 

modeling. The Boussinesq approximation has 
been used to formulate the partial differential 

equation system of the thermal convection. 

The governing equations (Navier-Stokes and 

heat transfer) were solved by a finite element 

method [Comsol Multiphysics 3.5, 

Zimmermann 2006]. The flexibility of the 

method allowed modeling of the thermal 

convection not only in rectangular domain, but 

in other geometries, as well. The results 

obtained in rectangular coordinate system were 

compared with the benchmark study of 

Blankenbach et al. [1989] and the agreement 

was within 1% error. 

The simulations have been carried out in two 

dimensional rectangular, cylindrical, and in an 
“Earth’s- mantle-like” cylindrical-shell 

domain. Using this method this was the first 

time in Hungary, when the thermal mantle 

convection could be modeled successfully out 

of Cartesian coordinate system.  

The mantle dynamics is controlled by the 

Rayleigh number (Ra) which is the ratio of the 

buoyancy and viscous force that is the engine 

of the flow system. The effect of Ra has been 

studied in the range of 104 to107 (1e4-1e7). It 

was found that relationships between surface 
heat flow (Nu) and Ra (Nu ~ Ra 1/3), and root-

mean-square velocity (vrms) and Ra (vrms ~ Ra 
2/3), -originally derived from the thermal 

boundary layer theory for 2D rectangular 

domain-, are valid in the other studied 

geometries, as well. Obviously, for a given 

Rayleigh – number, Nu, vrms and the mean 

temperature of the convection cell depend on 

the geometry: the highest values were obtained 

in case of rectangular model domain. The 

significance of the cylindrical geometry is that 
for a given rms velocity the surface heat flow 

is the highest. In that sense the most effective 

heat transport occurs in cylindrical shape 

convection systems. The dimensionless mean 

cell temperature was 0.5 in case of symmetric 

rectangular domain, and it was lower in 

cylindrical and cylindrical – shell domains. 

The lower mean cell temperature derives from 

the asymmetry of the flow regimes determined 

by these geometries. In case of cylindrical 

convection the surface of the hot upwelling 

plume in the centre is smaller than the surface 
of the cold downwelling flow at the rim of the 

cylinder. In case of cylindrical-shell geometry 

the outer cold surface of the domain is larger 

than the inner heated surface (like in case of 

the Earth) resulting in low cell temperature. 

Additionally in cylindrical geometry the 
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results were close to the results of the three 

dimensional case, this has been alluded to that 

the upwelling part of the 3D mantle convection 

is cylindrical (mantle plume). Finally, in a 

sense with the comparison of the three 

geometries it could be said that the cylindrical 
coordinate-system seems to be the most 

appropriate geometry to investigate the 

physical properties and surface manifestations 

of an individual mantle plume.     

 

 

1.1 Method and Theory, use of Comsol 

  

 

 

These days the two dimensional numerical 

modelling has been widely still used 
[ČIŽKOVA, MATYSKA 2004; MITTELSTAEDT, 

TACKLEY 2006; BRUNET, YUEN 2000], since 

this method uses lower memory therefore it 

runs faster and a lot of physical phenomena 

can be easier examined in this way. However it 

is obviously true that using only two 

dimensional simulations means a limitation for 

the real global mantle flow (which is spherical 

3D), consequently the 2D physical parameters 

and results can be used only for studying the 

behaviour of a mantle-like fluid and they 
cannot explain the real global Earth Mantle 

circulation [Cserepes 1992, 2002.]. The main 

scientific target of this study is to identify the 

effect of the different geometries on the very 

high viscous “mantle-like” fluid flow system 

and to determine the impact of the Ra number. 

The following equations (Incompressible 

Navier-Stokes (1-2) and Heat transfer (3)) 

describe the Boussinesq approximation of the 

mantle convection [Chandrasekhar 1961]: 
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where u is the velocity vector, is the 

density,  the thermal expansion, g is gravity, 

p is the pressure, is viscosity, T is the 
temperature, cp the specific heat and K thermal 

coefficient. Equations (1-3) were solved by a 

Comsol direct solver, UMFPACK 
[Zimmermann 2006], using the boundary 

conditions: mechanically slip/symmetry and 

thermically the lower (or inner) boundary had 

higher temperature than the upper (surface). 

The non-dimensional form of equation (2) 

contains the Ra number, which is the unique 

controlling parameter of the system. The Ra 

number (4), which is the ratio of the buoyancy 
and viscous force, is responsible for the 

dynamics of the mantle regime.  
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Where d is the thickness of the mantle. Higher 

the Ra number is more vigorous the dynamics 

of the flow system. It is important to note that 

in the Earth Mantle  the exact value of the Ra 

number is not known [Galsa 2008.], it is about 
10

7 
(1e7). 

According to the linear stability theory 

[Schubert, Turcotte, Olson 2001] the mantle 

convection can exists only above a critical 

(minimum) Ra number (which is 
  

 
    ~ 

657.5). So the Ra number of the Earth’s mantle 

is probably more than four magnitudes higher 

than the critical value that suggests the 

convection should exists. A relevant factor is 

the impact of the Ra number on the mantle 

circulation therefore the 1e4-1e7 range has 
been used by modelling.  

 

1.2 Results 

 

To test the numerical accuracy of the Comsol 

Multiphysics, Blankenbach et al’s 1989 study 

has been used and the results were very 

satisfactory (see Appendix, Table 1.), the 

agreement was within 1% error. 

  

 
 

 
 

Figure 1. Cylindrical-shell, non-dimensional 

temperature field distribution, stationar. 

Ra=104 and non-stationary solutions in case 

Ra=105-107. 

 

On Figure 1 the temperature distribution can 

be seen using cylindrical-shell domain. The 
higher the Ra number is the more chaotic the 



structure of the flow system will be. The hot 

regions (red colour) are plumes (upwellings) 

and flowing to the surface, the cold regions 

(blue colour) are downwellings and streaming 

to the “Core-Mantle-boundary”. Left to the 

right the Ra number is increasing from 1e4 to 
1e7. It means that the first model is stationary 

but the others not those are time-dependent 

phenomena due to the chaotic attitude of 

mantle flow (see Figure 2.). It can be noticed 

that at higher Ra numbers  

the up/down –wellings are getting thinner and 

the boundary layers (at the top and bottom) are 

also thinning because of the increscent velocity 

(see detailed Boundary Layer Theory, 

Schubert, Turcotte,  

Olson 2001) . The above described phenomena 

are valid in Cylindrical and Cartesian 
geometry too [Herein et al. 2008]. 

 

 
Figure 2. Non-dimensional parameters (Nu, 

vrms) versus non-dimensional 

time, Ra=1e4(stationary) , 1e7(time-

dependent). 

 
It was found that relationships between surface 

heat flow (Nu) and Ra (Nu ~ Ra 1/3), and root-

mean-square velocity (vrms) and Ra (vrms ~ 

Ra 2/3), originally derived from the thermal 

boundary layer theory [Turcotte et al. 1967] 

for 2D rectangular domain, are valid in the 

other studied geometries, as well (Fig. 3, 7, 

11). Obviously, for a given Rayleigh number, 

Nu, vrms and the mean temperature of the 

convection cell depend on the geometry: the 

highest values were obtained in case of 
rectangular model domain. The significance of 

the cylindrical geometry is that for a given rms 

velocity the surfaceheat flow is the highest 

(Fig. 3). In that sense the most effective heat 

transport occurs in cylindrical shape 

convection systems (Figure. 3.). 

 

 
Figure 3. Relationship between Ra and the 

non-dimensional parameters (Nu, vrms ),  

in Cartesian (blue), Cylindrical (red) and in 

Cylindrical-shell (black) geometry. 

 

The dimensionless mean cell temperature was 
0.5 in case of symmetric rectangular domain 

(Cartesian), and it was lower in cylindrical and 

cylindrical shell domains (Figure 4). 

 

 
Figure 4. Relationship between Ra and the 

average temperature, in Cartesian (blue),  

Cylindrical (red), and Cylindrical-shell (black) 

geometry. 

 

It is interesting that in cylindrical case the 

average temperature decreases with increasing 

Ra, but in the other two cases the average 

temperature is constant, there is no Ra 

dependence. The lower mean cell  

 
temperature derives from the asymmetry of the 

flow regimes determined by these geometries. 

In case of cylindrical convection the surface of 

the hot upwelling plume in the centre is 

smaller than the surface of the cold 

downwelling flow at the rim of the cylinder. In 

case of cylindrical- shell geometry the outer 

cold surface of the domain is larger than the 

inner heated surface resulting in low cell 

temperature. Overall it could be said that the 

cylindrical-shell geometry provided the best 
way to analyze the chaotic structure of the 

thermal mantle convection. 

 

 

 

 



2. Conclusions 

 

Comsol Multiphysics proved as a good tool to 

model thermal mantle convection.   

Using this method this was the first time in 

Hungary, when the thermal mantle convection 
could be modeled successfully out of Cartesian 

coordinate system. It had been testified that the 

geometry has an influence on the dynamics of 

the thermal convection. At high Ra number 

(1e7) the mantle flow is time-dependent and 

chaotic in all geometries. In total the 

cylindrical-shell geometry provided the best 

image of the chaotic structure of the thermal 

mantle convection.  
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5. Appendix 
 

Table 1: Comparison between recent study and 

Blankenbach’s 1989 study. 

 

 
 

 


