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Introduction

e Goal: Visualizing the dynamics of phase slip centersina 1D
model of superconducting wire based on the set of time-
dependent Ginzburg-Landau equations (TDGL)

e COMSOL Multiphysics® General Form PDE interface
e Unique to this study: The set of TDGL equations for
superconductors with finite gap was used in full.
* We took into account interference with normal and
superfluid motions.
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Physics

Phase Slippage:

e Phase difference of the order
parameter between the ends of
the superconducting wire.

* The density of pair condensate,
governed by the order
parameter, must vanish at
certain times.

* This results in oscillations in the
density of pair condensates and
the current.
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Motivation

* Advantages of Modeling in COMSOLE®:
* Tracing non-linear time dependent solutions and events,
which occur in picoseconds.
* Automation for exploration of various observables:
* Cooper-pair density, superfluid and normal velocities, etc.
* High quality animation of solutions.
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Theory

Bardeen, Cooper and Schrieffer in the microscopic explanation

of superconductivity! proposed that the quantum ¥ -function

of the Ginzburg-Landau theory? at thermodynamic description

of superconducting state may be related to the energy gap in

the spectrum of paired electrons.

* Proven by Gor’kov3

e Equation for ¥ -function is not like the Schrodinger
equation but rather had a diffusion character proven by
Schmid4 and by Eliashberg and Gor’kov > on the basis of the
Green’s function model of superconductivity.
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Theory

As shown in Gulian et al.(1989), for superconductors with finite gap
the microscopic theory yields additional terms in the current which
corresponds to the interference between superconducting and
normal motions of electrons. These terms could be essential in many
situations. However, they have not been taken into account in a vast
amount of research articles. We have included them into our

~_ framework of TDGL equations in our studies.

N4 CHAPMAN _ anmei—
HN UNIVERSITY »__:__A__:____Z,A._._._A._-_;-;_-;:.-::::::-'-»A--ﬂ-"“'




Equations for Simulation: TDGL

e The Order Parameter 4 = |4| exp(if)
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Equations for Simulation

For acceleration of numerical
computations, it is convenient to
replace the elliptic integrals in the
expression the current density by
elementary functions. We found a good
enough approximation, this could be
done by the following relation on the
right:

* An Interpolation function using an
exact table for elliptic functions was
generated, then implemented into
the library of COMSOL function.

Replacement of elliptic integrals:
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elliptic functions and its
approximation by elementary
function, as seen above, which
was used in the modeling.
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Numerical Modeling: Implementation

* Three general form PDE interfaces
* Real part of Y, imaginary part of ¥, and the vector potential, 4
 Dirichlet Boundary conditions

* The geometry was built as a simple 1-D wire of half-length L.

* The time-dependent solutions were simulated for given interval
of time in seconds with time steps of 0.1.

* The parameters for the results were set to:
oc=1 k=04, Ap=0, xo=5, width = 0.1 and n = 0.5.

*Full details can be seen in the appendix of the paper which is in preparation.

\-—:::::fj_‘_’:»,_;,__\_ “n C H A P M A N v__»_A__,A_,::::jﬁj::‘-::*"'
HN UNIVERSITY »__:__A__:____Z,A._._._A._-_;-;_-;:.-::::::-'-»A--ﬂ-"“'




Automation Implementation with MATLAB®

* The dynamics of time-dependent solutions were solved for by
producing plots of the modulus of ¥, \/Re(¥)2 + Im(¥)2 =
Ju? + u,2, with respect to the x-coordinate.

* The parameter of j,, for a fixed value of 7.|4|, was swept in
search for the critical current, j., in which the first phase slip
center occurs. This was accomplished through LiveLink™,
which established a connection between COMSOL and
MATLAB®, allowing MATLAB script via commands to control
the COMSOL model.
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*MATLAB® code available for download at:https://irisdorn.github.io/automatedcomsol/
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https://irisdorn.github.io/automatedcomsol/

Results of Finite Element Modeling
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Modulus W(x) for Te|A|: 1.100 J: 0.2949 Modulus W(x) for T¢|A|: 1.500 J: 0.1038
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Results of Finite Element Modeling

At and between TelAl = Delta = 0.9 and Jc = 0.3676 Delta = 1.0 and Jc = 0.35
11 11 ¢
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. . e 08 "3 08
over time, with the low values > ok F ol
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Results of Finite Element Modeling

107

From the automation
search of locations of
phase slip centers with

increasing values of E i i X
T.|4|, we obtained BB 2
"branching" and "anti- A )
branching" of 7.|4| at ol %
their critical currents. B b
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Location of PSCs with increased 7.|4| with branching and anti-branching
for different parameters than previous.
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Summary

* Goal: Exploration of the parameters governing the dynamics
of phase slip centers in a 1D model of superconducting wire
e Automation of COMSOL® utilizing MATLAB®
* “Branching” & “Anti-Branching” Solutions discovered
using Automation method.
* To help experimentalist understand better properties of
resistive states in superconducting filaments.
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Conclusion

Thanks to the power of COMSOL paired with MATLAB® we obtained many
results with only a minor part of our findings shown here. These two software
combined have provided our research the exceptional ability to go into great
details in regards to visualizing and exploring the microscopic phenomena fine
enough to be close to experimental findings. With this ability, we are directing
our future work towards gaining deeper understanding of the role of interference

current, exploring the dynamics of phonon feedback and expanding our model to
2D and most realistic 3D samples.

Acknowledgements

We are grateful to G. Melkonyan for helpful discussions, and J.

Tollaksen for encouraging our TDGL modeling. This work was

supported in part by ONR Grants NO0014-16-1-2269, N0O0014-

17-1-2972, NO0014-18-1-2636, and N0O0014-1901-2265.

\"”\:lii‘_:j_-::.:_\,x\ mn C H A P M A N ____A__,A_,-::;jj::z_{-:_‘:z_ e
- BN UNIVERSITY _—— -




Thank you for your attention!

Questions?
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