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Introduction

• Goal: Visualizing the dynamics of phase slip centers in a 1D 
model of superconducting wire based on the set of time-
dependent Ginzburg-Landau equations (TDGL)
• COMSOL Multiphysics® General Form PDE interface
• Unique to this study: The set of TDGL equations for 

superconductors with finite gap was used in full.
• We took into account interference with normal and 

superfluid motions.



Physics
Phase Slippage:

• Phase difference of the order 
parameter between the ends of 
the superconducting wire.

• The density of pair condensate, 
governed by the order 
parameter, must vanish at 
certain times.

• This results in oscillations in the 
density of pair condensates and 
the current.



Motivation

• Advantages of Modeling in COMSOL®:
• Tracing non-linear time dependent solutions and events, 

which occur in picoseconds.
• Automation for exploration of various observables:

• Cooper-pair density, superfluid and normal velocities, etc.
• High quality animation of solutions.



Theory
Bardeen, Cooper and Schrieffer in the microscopic explanation 
of superconductivity1 proposed that the quantum 𝛹 -function 
of the Ginzburg-Landau theory2 at thermodynamic description 
of superconducting state may be related to the energy gap in 
the spectrum of paired electrons. 
• Proven by Gor’kov3

• Equation for 𝛹 -function is not like the Schrödinger 
equation but rather had a diffusion character proven by 
Schmid4 and by Éliashberg and Gor’kov 5 on the basis of the 
Green’s function model of superconductivity.
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Theory

As shown in Gulian et al.(1989), for superconductors with finite gap
the microscopic theory yields additional terms in the current which
corresponds to the interference between superconducting and
normal motions of electrons. These terms could be essential in many
situations. However, they have not been taken into account in a vast
amount of research articles. We have included them into our
framework of TDGL equations in our studies.



Equations for Simulation: TDGL

• The  Order Parameter 𝛥 = 𝛥 𝑒𝑥𝑝( 𝑖𝜃)
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𝑗 =
𝜋𝜎𝑛
4𝑇

𝑸 |𝛥|2 −
1

𝛾

𝜕|𝛥|2

𝜕𝑡
+ 𝜎𝑛𝑬 1 +

|𝛥|2 + 𝛾2

2𝑇
𝐾

𝛥

|𝛥|2 + 𝛾2
− 𝐸

𝛥

|𝛥|2 + 𝛾2



Equations for Simulation Replacement of elliptic integrals:

𝐾 𝑥 − 𝐸 𝑥 ≅
𝑙𝑛( 1 + 𝑥) − 𝑙𝑛( 1 − 𝑥)

2
+ (1 − 𝑥) 𝑙𝑛( 1 − 𝑥)

≡
𝑙𝑛( 1 − 𝑥2)

2
− 𝑥 𝑙𝑛( 1 − 𝑥) ≡ 𝑓(𝑥)/𝑥.

For acceleration of numerical 
computations, it is convenient to 
replace the elliptic integrals in the 
expression the current density by 
elementary functions. We found a good 
enough approximation, this could be 
done by the following relation on the 
right:

• An Interpolation function using an 
exact table for elliptic functions was 
generated, then implemented into 
the library of COMSOL function.

Comparison of exact difference of 
elliptic functions and its 
approximation by elementary 
function, as seen above, which 
was used in the modeling.



Numerical Modeling: Implementation

• Three general form PDE interfaces 
• Real part of 𝜓, imaginary part of 𝜓, and the vector potential, 𝐴
• Dirichlet Boundary conditions 

• The geometry was built as a simple 1-D wire of half-length L. 

• The time-dependent solutions were simulated for given interval 
of time in seconds with time steps of 0.1. 

• The parameters for the results were set to: 
𝜎 = 1, 𝜅 = 0.4, 𝐴0= 0, 𝑥0= 5, 𝑤𝑖𝑑𝑡ℎ = 0.1 and 𝜂 = 0.5.

*Full details can be seen in the appendix of the paper which is in preparation.



Automation Implementation with MATLAB®
• The dynamics of time-dependent solutions were solved for by 

producing plots of the modulus of 𝛹, 𝑅𝑒(𝛹)2 + 𝐼𝑚(𝛹)2 ≡
𝑢2 + 𝑢2

2,  with respect to the x-coordinate.

• The parameter of 𝑗0, for a fixed value of  𝜏𝜀 𝛥 , was swept in 
search for the critical current, 𝑗𝑐, in which the first phase slip 
center occurs. This was accomplished through LiveLink™, 
which established a connection between COMSOL and 
MATLAB®, allowing MATLAB script via commands to control 
the COMSOL model. 



Automation Implementation with MATLAB®

*MATLAB® code available for download at:https://irisdorn.github.io/automatedcomsol/

https://irisdorn.github.io/automatedcomsol/


Results of Finite Element Modeling

Set of phase slippage in a 1D wire evolving over time.





Results of Finite Element Modeling

At and between 𝜏𝜀 𝛥 =
0.9 and 1.0, we observe the 
double phase slippage evolving 
over time, with the low values 
of 𝜏𝜀 𝛥 in this region showing 
the double phase slippages 
closer to the center of the wire, 
while increasing  𝜏𝜀 𝛥 in this 
region shows the double phase 
slippages moving away from the 
center and toward the ends of 
the wire. 

Set of double phase slippage evolving over time for increasing 𝜏𝜀 𝛥 .





Results of Finite Element Modeling

Location of PSCs with increased 𝜏𝜀 𝛥 with branching and anti-branching 
for different parameters than previous.

From the automation 
search of locations of 
phase slip centers with 
increasing values of 
𝜏𝜀 𝛥 , we obtained 
"branching" and "anti-
branching" of  𝜏𝜀 𝛥 at 
their critical currents. 



Summary

• Goal: Exploration of the parameters governing the dynamics 
of phase slip centers in a 1D model of superconducting wire
• Automation of COMSOL® utilizing MATLAB®
• “Branching” & “Anti-Branching” Solutions discovered 

using Automation method.
• To help experimentalist understand better properties of 

resistive states in superconducting filaments.



Conclusion
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Thanks to the power of COMSOL paired with MATLAB®  we obtained many 
results with only a minor part of our findings shown here. These two software 
combined have provided our research the exceptional ability to go into great 
details in regards to visualizing and exploring the microscopic phenomena fine 
enough to be close to experimental findings. With this ability, we are directing 
our future work towards gaining deeper understanding of the role of interference 
current, exploring the dynamics of phonon feedback and expanding our model to 
2D and most realistic 3D samples.



Thank you for your attention!

Questions?


