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Introduction 
 
The dynamics of phase slip centers in a 1D model of 
superconducting wire was created based on the set of 
time-dependent Ginzburg-Landau equations (TDGL). 
COMSOL Multiphysics® General Form PDE 
interface was used. TDGL has successfully applied to 
this problem decades ago and most recently, the 
visibility of solutions has been enhanced by engaging 
COMSOL's power. The feature which distinguishes 
the current report here is that, for the first time, the set 
of TDGL equations for superconductors with finite 
gap was used in full. The terms relevant to the 
presence of finite gap were included not only into the 
equation for the wave function of the condensate, but 
also into the equation for the current in the form of 
interference terms. 
 
The performed thorough study of the solutions of these 
non-linear equations required extensive searches for 
multiple solutions at certain values of given 
parameters. We found it extremely helpful using the 
built-in capability of COMSOL which could be 
operated in tandem with MATLAB®. By developing 
the MATLAB code, we were able to automate findings 
of the relevant solutions. We obtained "branching" and 
"anti-branching" of these solutions at certain 
parameters of the problem. These properties are 
directly relevant to experimental results being 
obtained with these objects. 
 
Evolution of phase-slip centers takes place on 
picosecond time-scale, which can be very hard to 
visualize in practice. COMSOL's ability to generate 
animation provides unique opportunities to trace 
details of the microscopic evolution of various 
observables (such as the Cooper-pair density, 
superfluid and normal velocities, etc.). The most 
interesting cases and the most characteristic features 
will be demonstrated at the presentation as movies and 
they are available for downloading in link in the 
appendix. 
 
 
 
 

 
Theory 
 
Bardeen, Cooper and Schrieffer in the microscopic 
explanation of superconductivity1 already proposed 
that the 𝛹𝛹 -function of the Ginzburg-Landau theory2 at 
thermodynamic description of superconducting state 
may be related to the energy gap in the spectrum of 
paired electrons. Later this idea was proven by 
Gor’kov3. Increased efforts have been developed to 
generalize these microscopic equations for time-
dependent problems, especially by Schmid4  who 
came to the conclusion that the proper equation for the 
𝛹𝛹 -function is not like the Schrödinger equation but 
rather had a diffusion character. This result was 
confirmed by Éliashberg and Gor’kov 5 on the basis of 
the Green’s function model of superconductivity. 
 
Interestingly, at that point a closed system of TDGL 
equations resulted for gapless superconductors6 only. 
After the development of more powerful energy-
integrated Green’s function-based kinetic equations 
for non-equilibrium superconductivity, this system of 
equations in closed form was explicitly derived by 
other researchers7-10. In all of these attempts, the 
expression for current corresponding to the dynamics 
of superconductors was presented in the form which 
corresponds to the two fluid model of 
superconductivity11. 
 
As shown in Ref. 12, for superconductors with finite 
gap the microscopic theory yields additional terms in 
the current which corresponds to the interference 
between superconducting and normal motions of 
electrons. These terms could be essential in many 
situations. However, they have not been taken into 
account in a vast amount of research articles. We have 
included them into our framework of TDGL equations 
with a hope that this will be interesting for both 
researchers in various fields of physics and as well as 
for mathematicians, who are currently paying close 
attention to the properties of these non-linear set of 
equations. 
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Equations for Simulation 
 
Let us consider the dynamic equation for the order 
parameter 𝛥𝛥 = |𝛥𝛥| 𝑒𝑒𝑒𝑒𝑒𝑒( 𝑖𝑖𝑖𝑖) : 
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Here the theoretical units  ℏ = 𝑐𝑐 = 𝑒𝑒 = 1  are used,  𝐴𝐴  
and  𝜙𝜙  are vector and scalar potentials of the 
electromagnetic field,  𝑇𝑇𝑐𝑐  is the critical temperature of 
the superconductor,  𝜏𝜏𝜀𝜀  is the electron-phonon 
relaxation time,  𝐷𝐷  is the electronic diffusion 
coefficient, and 𝜁𝜁(3)  is the Riemann zeta function. 
 
Equation (1) describes the behavior of the Cooper pair 
condensate. The order parameter  𝛥𝛥  (|𝛥𝛥| is equal to 
the superconducting energy gap) is proportional to the 
original Ginzburg-Landau 𝛹𝛹 -function (normalized so 
as its squared modulus is equal to the density of pair 
condensate). One can obtain from (1) the "dirty metal" 
superconducting coherence length 
𝜉𝜉(𝑇𝑇) = {𝜋𝜋𝜋𝜋/[8(𝑇𝑇𝑐𝑐 − 𝑇𝑇)]}

1
2 ≡ 𝜉𝜉. 

 
Numerical modeling requires Eq. (1) in dimensionless 
form. This is done by dividing (1) by 𝜂𝜂 = (𝑇𝑇𝑐𝑐 − 𝑇𝑇)/𝑇𝑇𝑐𝑐 
, normalizing the order parameter by the relation  𝛹𝛹 =
𝛥𝛥/𝛥𝛥0  (where  𝛥𝛥0 = {8𝜋𝜋2𝑇𝑇𝑐𝑐(𝑇𝑇𝑐𝑐 − 𝑇𝑇)/[7𝜁𝜁(3)]}

1
2  is the 

equilibrium temperature-dependent value of the order 
parameter), and denoting 𝛿𝛿 = 2𝜏𝜏𝜀𝜀𝛥𝛥0 ,  𝜏𝜏 = 𝑡𝑡𝑡𝑡
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and 𝜙̄𝜙 = 2𝜙𝜙𝜉𝜉2
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After straightforward algebra we obtain equation 
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     (2) 
The vector potential as well as spatial derivatives in 
(2) are not yet normalized. Since in the Ginzburg-
Landau approach another spatial parameter, the 
London penetration length, 𝜆𝜆𝐿𝐿, comes in from the 
equation for the current density, 𝑗𝑗, then the final choice 
for the normalization of spatial derivatives will be 
done after considering that equation: 
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     (3) 
Here 𝜎𝜎𝑛𝑛 is the conductivity of normal excitations in 
superconductor, 𝛾𝛾 = (2𝜏𝜏𝜀𝜀)−1 , 𝐾𝐾(𝑥𝑥) and 𝐸𝐸(𝑥𝑥) are the 
complete elliptic integrals of the first and second type, 
respectively, 𝑄𝑄 = −2𝐴𝐴 + 𝛻𝛻𝛻𝛻, and 
𝐸𝐸 = −𝐴̇𝐴 − 𝛻𝛻𝜙𝜙. Using the relations 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 4𝜋𝜋𝜋𝜋 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴, 𝑢𝑢 = 𝜋𝜋^4/[14𝜁𝜁(3)]  , 𝜂𝜂 = (𝑇𝑇𝑐𝑐 − 𝑇𝑇)/𝑇𝑇𝑐𝑐    
, and also choosing the gauge 𝜙𝜙 = 0, we arrive, after 
some intermediate transformations, at the following 
equation for the current (3): 
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     (4) 
where 𝜎𝜎 = 𝜎𝜎𝑛𝑛

𝑡𝑡0
, 𝑡𝑡0 = 𝜉𝜉2

𝐷𝐷
. 

 
In the same representation 𝜙𝜙 = 0, equation (2) 
acquires the form: 
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Here 𝜅𝜅 = 𝜆𝜆𝐿𝐿

𝜉𝜉
 is the Ginzburg-Landau parameter, and 

𝜆𝜆𝐿𝐿 = {8𝜋𝜋4𝜎𝜎𝑛𝑛(𝑇𝑇𝑐𝑐 − 𝑇𝑇)/[7𝜁𝜁(3)]}−
1
2. 

 
For acceleration of numerical computations, it is 
convenient to replace the elliptic integrals in the 
expression (4) by elementary functions. With a good 
enough approximation, this could be done by the 
following relation: 
 
 
 

𝐾𝐾(𝑥𝑥) − 𝐸𝐸(𝑥𝑥) ≅
𝑙𝑙𝑙𝑙( 1 + 𝑥𝑥) − 𝑙𝑙𝑙𝑙( 1 − 𝑥𝑥)

2
+ 

(1 − 𝑥𝑥) 𝑙𝑙𝑙𝑙( 1 − 𝑥𝑥) ≡
𝑙𝑙𝑙𝑙( 1 − 𝑥𝑥2)

2
− 𝑥𝑥 𝑙𝑙𝑙𝑙( 1 − 𝑥𝑥)

≡ 𝑓𝑓(𝑥𝑥)/𝑥𝑥. 
     (6) 
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It is not difficult to deduce that as 𝛿𝛿 → 0, Eq. (4) 
converts into the gapless expression 

𝜎𝜎𝐴̇𝐴 = − �𝐴𝐴 +
𝑖𝑖

2𝜅𝜅|𝜓𝜓|2
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− 𝛻𝛻 × 𝛻𝛻 × 𝐴𝐴, 
     (7) 
 
In which case, interference terms do not matter. 
However, when 𝛿𝛿 → ∞, interference terms diverge. 
The latter is related with the case 𝜏𝜏𝜀𝜀|𝛥𝛥| → ∞, which is 
unphysical since the inelastic scattering rate of 
electrons is always finite. However, if 𝜏𝜏𝜀𝜀|𝛥𝛥| ≥ 1 then 
these interference terms12 are essential for realistic 
description at modeling. It is worth noting that in 
equation for the 𝛹𝛹 -function, (1) or (2), similar 
contributions have been taken into account by many 
researchers since their introduction in Refs. 7-10. Thus 
our approach which takes into account finite values for 
for 𝛹𝛹 -function,  and for 𝛿𝛿, could be considered as 
logically consistent, 
 
 
Numerical Model 
 
To begin with COMSOL, we will replace with Log 
approximation function. 
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     (8) 
 
Technical details of implementation into COMSOL 
Multiphysics® are discussed in Appendix. 
 
 
Once the equation based modeling was fully 
implemented, with three general form PDE interfaces 
and Dirichlet Boundary conditions, the geometry was 
built as a simple 1 D wire of half-length L. The time-
dependent solutions were simulated for given interval 
of time in seconds with time steps of 0.1. The 
parameters for the results were set to: 𝜎𝜎 = 1, 𝜅𝜅 =
0.4, 𝐴𝐴0 = 0, 𝑥𝑥0 = 5, 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = 0.1 and 𝜂𝜂 = 0.5. 
 
The dynamics of time-dependent solutions were 
solved for by producing plots of the modulus 
of 𝛹𝛹,�𝑅𝑅𝑅𝑅(𝛹𝛹)2 + 𝐼𝐼𝐼𝐼(𝛹𝛹)2 ≡ �𝑢𝑢2 + 𝑢𝑢22, with 
respect to the x-coordinate. The parameters of 𝑗𝑗0 and 
𝜏𝜏𝜀𝜀|𝛥𝛥| were swept in search for the critical current, 𝑗𝑗𝑐𝑐, 
in which the first phase slip center occurs. This was 
accomplished through LiveLink™, which established 
a connection between COMSOL and MATLAB®, 

allowing MATLAB script via commands to control 
the COMSOL model. MATLAB script was created to 
automate sweeping through values of 𝑗𝑗0 for select 
values of 𝜏𝜏𝜀𝜀|𝛥𝛥|and discovering minima of prominence 
≥ 0.996 in the modulus of 𝛹𝛹. In turn, when the 
automation code located 𝑗𝑗𝑐𝑐 for specific values of 𝜏𝜏𝜀𝜀|𝛥𝛥|, 
these values were stored as well as the location of the 
PSC along the wire in datasets. Plots of these values of 
energy gap versus the critical current and the location 
of PSC at the critical current versus delta were 
generated and will be discussed in the next section. See 
Appendix for the MATLAB® automation code link. 
 
 
Results of Finite Element Modeling 
 
The behavior of PSCs in 1D wires have been 
extensively studied in the literature both 
experimentally14 and theoretically15. Review articles 
and books are existent and interested readers can find 
references therein.  As was mentioned in the 
Introduction, the interference terms in the current are 
dropped in almost all theoretical articles except some 
results10. However, no systematic research was 
performed even in Ref. 10. We will fill in this gap here 
by our studies, which will demonstrate the role of the 
finite gap in the dynamics of PSC in full extent (this 
factor will be included for 𝛹𝛹 -function and the 
current). 
 
 In Figure 1, we show the first phase slippages, which 
occurs when the density of pair condensate has a 
single touching at the center of the 1D wire, for 
different values of 𝜏𝜏𝜀𝜀|𝛥𝛥|. Here we can see the tracing 
of the modulus of 𝛹𝛹 along the wire evolving over time, 
first bowing at the center until there is a very clear 
single dip to modulus of 𝛹𝛹 = 0. For 𝜏𝜏𝜀𝜀|𝛥𝛥|= 0.1 & 0.6, 
the ends of the wire are unaffected by the phase 
slippage, while for 𝜏𝜏𝜀𝜀|𝛥𝛥| = 1.1 & 1.5, there is a 
decrease in modulus of 𝛹𝛹 at the ends and an overall 
increased bowing along the wire. It should also be 
noted that the increase in 𝜏𝜏𝜀𝜀|𝛥𝛥|  also increases the time 
for the first phase slippage. 
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Figure 1. Set of single phase slippage along a 1D wire versus 
the modulus of 𝛹𝛹 (density of pair condensate),  evolving 
over time for increasing 𝜏𝜏𝜀𝜀|𝛥𝛥| . 
 
 

 
 
Figure 2. Set of double phase slippage evolving over time 
for increasing 𝜏𝜏𝜀𝜀|𝛥𝛥| . 
 
At and between 𝜏𝜏𝜀𝜀|𝛥𝛥|  = 0.9 and 1.0, we observe the 
double phase slippage evolving over time, with the 
low values of 𝜏𝜏𝜀𝜀|𝛥𝛥|  in this region showing the double 
phase slippages closer to the center of the wire, while 
increasing the 𝜏𝜏𝜀𝜀|𝛥𝛥|  in this region shows the double 
phase slippages moving away from the center and 
toward the ends of the wire. 

 
Figure 2. Location of PSCs with increased 𝜏𝜏𝜀𝜀|𝛥𝛥|  with 
branching and anti-branching. 
 
From these results, we obtained "branching" and "anti-
branching" of  𝜏𝜏𝜀𝜀|𝛥𝛥|   at their critical currents. The 

locations of the phase slippages versus 𝜏𝜏𝜀𝜀|𝛥𝛥| are 
plotted in Fig. 3. 
 
 
 
Conclusion 
 
These results demonstrate only a minor part of our 
findings, thanks to the power of COMSOL paired with 
MATLAB®. These two softwares combined have 
provided our research the exceptional ability to go into 
great details in regards to visualize and exploration of 
microscopic phenomena fine enough to be close to 
experimental findings. Future work includes modeling 
the time evolution of the current densities 
(interference, normal and superconducting), sweeping 
through the phonon term, and modeling the current in 
thin 2D films and massive 3D samples. 
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Appendix 
 
The Equation Based Modeling with the Partial 
Differential Equation (PDE) interface was utilized in 
COMSOL for this simulation. Equation 6 required 
one replacement before implementing into the 
program, 𝑢𝑢 = 𝜋𝜋4

[14𝜁𝜁(3)]
≅ 5.798 since the term u is also 

used for the PDE interface. After this replacement, 
the real and imaginary parts of the order parameter 
are represented as 𝑅𝑅𝑅𝑅(𝜓𝜓) = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) and 𝐼𝐼𝑚𝑚(𝜓𝜓) =
𝑢𝑢2(𝑥𝑥, 𝑡𝑡) with 𝑢𝑢,𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑥𝑥 and 𝑢𝑢𝑥𝑥𝑥𝑥 denotes partial 
derivatives with respect to 𝑥𝑥 or 𝑡𝑡 and the subscript of 
the variable (𝑢𝑢,𝑢𝑢2,𝑢𝑢3,...).  
 
The form of the PDE to be solved is: 
 𝒆𝒆𝑎𝑎

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ 𝑑𝑑𝑎𝑎
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝛻𝛻 ⋅ 𝛤𝛤 = 𝐹𝐹 and this form was used 
three times. The first PDE interface (𝑃𝑃𝑃𝑃𝐸𝐸1) is for the 
real part of 𝜓𝜓, the second (𝑃𝑃𝑃𝑃𝐸𝐸2) is for the 
imaginary part of 𝜓𝜓, and the third (𝑃𝑃𝑃𝑃𝐸𝐸3) is for the 
vector potential, 𝐴𝐴. For all three PDE forms, 𝒆𝒆𝑎𝑎=0. 
The values of 𝑑𝑑𝑎𝑎for 𝑃𝑃𝑃𝑃𝐸𝐸1 and 𝑃𝑃𝑃𝑃𝐸𝐸2are set to 1, 
while 𝑃𝑃𝑃𝑃𝐸𝐸3 has this value defined by: 

𝑑𝑑𝑎𝑎 = 𝜎𝜎

⎝

⎜
⎛

1 + (1/𝜋𝜋)(5.798 ⋅ 𝜂𝜂(𝑢𝑢2 +

𝑢𝑢22))
1
2(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[ 1

�1+ 1

�𝑢𝑢2+𝑢𝑢22�𝛥𝛥2)
1
2
�

]

⎠

⎟
⎞

, 

where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is an interpolated function defined in 
the set of Global Definitions from a data set. 
Equivalently for this analytic function, we also used 
an interpolated function, a feature of the COMSOL 
Global Definitions, by uploading a data set of the 
difference of the elliptic functions.  
The expressions for terms 𝛤𝛤and 𝐹𝐹for each PDE are as 
follows: 
 
𝑃𝑃𝑃𝑃𝐸𝐸1: 𝛤𝛤1 = −𝑢𝑢𝑥𝑥

𝜅𝜅2
, 

𝐹𝐹1 = −
𝑢𝑢𝑥𝑥𝑥𝑥
𝜅𝜅2

+
�(1 + 𝛥𝛥2𝑢𝑢22)𝑢𝑢𝑥𝑥𝑥𝑥�

�𝜅𝜅2�1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

−
(𝛥𝛥2𝑢𝑢𝑢𝑢2𝑢𝑢2𝑥𝑥𝑥𝑥)

�𝜅𝜅2�1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

+
�2𝑢𝑢2𝑥𝑥(1 + 𝛥𝛥2𝑢𝑢22)(𝑢𝑢3 + 𝐴𝐴0)�

�𝜅𝜅�1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

+
�2𝑢𝑢𝑥𝑥𝛥𝛥2𝑢𝑢𝑢𝑢2(𝑢𝑢3 + 𝐴𝐴0)�

�𝜅𝜅�1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

+�
𝑢𝑢2𝑢𝑢3𝑥𝑥��1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�

𝜅𝜅
� 

−�𝑢𝑢(𝑢𝑢3 + 𝐴𝐴0)2/ ��1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�� 

+
𝑢𝑢(1 − 𝑢𝑢2 − 𝑢𝑢22 + 𝑝𝑝(((𝑥𝑥 − 𝑥𝑥0)/2)2 < 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ))

��1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

 
𝑃𝑃𝑃𝑃𝐸𝐸2:𝛤𝛤2 = − 𝑢𝑢2𝑥𝑥

𝜅𝜅2
 

𝐹𝐹2 = −
𝑢𝑢2𝑥𝑥𝑥𝑥
𝜅𝜅2

+
�(1 + 𝛥𝛥2𝑢𝑢22)𝑢𝑢2𝑥𝑥𝑥𝑥�

�𝜅𝜅2�1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

−
(𝛥𝛥2𝑢𝑢𝑢𝑢2𝑢𝑢𝑥𝑥𝑥𝑥)

�𝜅𝜅2�1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

−
�2𝑢𝑢𝑥𝑥(1 + 𝛥𝛥2𝑢𝑢2)(𝑢𝑢3 + 𝐴𝐴0)�

�𝜅𝜅�1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

−
�2𝑢𝑢2𝑥𝑥𝛥𝛥2𝑢𝑢𝑢𝑢2(𝑢𝑢3 + 𝐴𝐴0)�

�𝜅𝜅�1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

−�
𝑢𝑢𝑢𝑢3𝑥𝑥��1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�

𝜅𝜅
� 

−�𝑢𝑢2(𝑢𝑢3 + 𝐴𝐴0)2/ ��1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�� 

+
𝑢𝑢2(1 − 𝑢𝑢2 − 𝑢𝑢22 + 𝑝𝑝(((𝑥𝑥 − 𝑥𝑥0)/2)2 < 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ))

��1 + 𝛥𝛥2(𝑢𝑢2 + 𝑢𝑢22)�
 

 
And 𝑃𝑃𝑃𝑃𝐸𝐸3:𝛤𝛤3 = 0 

𝐹𝐹3 = −(𝑢𝑢3 + 𝐴𝐴0)�𝑢𝑢2 + 𝑢𝑢22

+ 2𝛥𝛥𝑎𝑎11(2𝑢𝑢𝑢𝑢𝑡𝑡 + 2𝑢𝑢2𝑢𝑢2𝑡𝑡)� 

+ �
𝑢𝑢𝑢𝑢2𝑥𝑥 − 𝑢𝑢2𝑢𝑢𝑥𝑥

𝜅𝜅
� �1

+ 2𝑎𝑎11 �
𝛥𝛥

𝑢𝑢2 + 𝑢𝑢22
� (2𝑢𝑢𝑢𝑢𝑡𝑡

+ 2𝑢𝑢2𝑢𝑢2𝑡𝑡)� − 𝑗𝑗0 

Here 𝑎𝑎11 = � 𝜂𝜂
5.798

. 

The conditions at the ends of the wire were controlled 
by Dirichlet boundary conditions of zero flux (𝒏𝒏 ⋅ 𝛤𝛤 =
0). However, each PDE interface has different 
prescribed values, r, of their respective Dirichlet 
boundary conditions, 𝑟𝑟1 = 1, 𝑟𝑟2 = 0, and 𝑟𝑟3 = −𝑗𝑗0 −
𝐴𝐴0. In additional, initial values must be applied for 
each PDE interface:  
𝑃𝑃𝑃𝑃𝐸𝐸1 has 𝑢𝑢 = 1 and 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0, 𝑃𝑃𝑃𝑃𝐸𝐸2 has 𝑢𝑢2 = 0 and 

𝑑𝑑𝑢𝑢2
𝑑𝑑𝑑𝑑

= 0, and 𝑃𝑃𝑃𝑃𝐸𝐸3 has 𝑢𝑢3 = −𝑗𝑗0 − 𝐴𝐴0 and 𝑑𝑑𝑢𝑢3
𝑑𝑑𝑑𝑑

= 0. 
Of great important to adequate solutions of this set of 
PDEs is a custom Mesh setting with maximum 
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element size = 0.01, maximum element growth rate = 
1 and resolution of narrow regions = 1. 
To  view or download the MATLAB® automation 
code, go to 
https://irisdorn.github.io/automatedcomsol/. 
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