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Background

= Bentonite clay is planned to be
used as a part of the spent
nuclear fuel disposal concept in
Finland

* Models for and experiments of
bentonite are needed to assess
the safety of disposal system

= Geological disposal environment
IS somewhat complex: many
phenomena has to be included
iInto the models
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Figure by Posiva Oy (www.posiva.fi)
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Background (2)

= initially disposal canister is
hot (maybe 80-90°C)
= water comes to bentonite

unevenly from fractures in
bedrock

,,. = almost all boundaries of
bentonite are fixed

= tunnel is backfilled with
bedrock some clay mixture
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The structure of bentonite and the constituents in Jussila’'s model

= solid skeleton _gpen pore
. liquid water (HEESPe))

d capillary water "dry air and water
= water vapor \

= air

soil aggregates
(microporosity)

Picture by V.Navarro & E.E.Alonso (Modelling swelling clays for
disposal barriers, Computers and Geotechics, 27 (2010) p.19-43)



VTT TECHNICAL RESEARCH CENTRE OF FINLAND 17/11/2010

Jussila’s model: phenomena

_

= deformation of the solid skeleton

= movement of liquid water, water
vapor and air

= evaparotation of water all the phenomena
—

= adsorption of water are coupled

» the effect of pore water pressure
on the deformation of the solid

= heat transfer
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Energy approach

» the mathematical model has been built such that only free energies
of the contituents and a dissipation function have to be defined

= the final constitutive laws can be obtained from the defined free
energies and dissipation function

= principle:

dissipation defined by
principle of maximum
entropy production

dissipation defined by
Clausius-Duhem inequality

I

general contitutive relations
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Energy approach (2)
general contitutive relations

+

free energies & dissipation function
(& some equation manipulations and
simplifications)

final constitutive equations
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Free energies and dissipation function

» the chosen free energies cover the free energies of each
constituent and the following interactions:

* mixing of the gaseous constituents
» adsorption between the liquid and solid constituents
» swelling between the liquid and solid constituents

= the dissipation function covers the following dissipative processes
* heat transfer
 movement of liquid and gaseous phases
 relative movement of water vapor and air
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Final equations(l): balance laws & other equations
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Final equations(2): constitutive laws

= gaseous phase state
equations

= flux of
e liquid water

e water vapor
e air

= stress-strain relation
= heat flux
= evaporation energy
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Final equations(3): material parameters

i i al[é—s—(é—sJ } for é—ss 5—5
= adsorption function . g \ & ), g & J,

0 for 5—5 > 5—5
él él 0
. - 2
= swelling function fo—a, (isJ a, (5__5)%15
XI| XI|

16 Y

= mechanical parameters K = Kt (ﬁj E=31-2v)K  G=E/(2(1+v))
S I /init

|

permeabilities Kj =K} retKsat Kirel = &" Kq.rel = CONStant

1808.5 K

. N s KO T kg JTIIK
" viscosities =2 Mo =HA0AD G T 94Ky /T
= diffusion coefficient _—
D = Dyt (T—J
ref
= heat related parameters A= g + (Aary — A ) | (L4 8728y
P , . jry : ] (PC)ett = PICI + ParyCs
¢’ =1.38 (T —273.15K) +732.5——

kgk? kgK



VTT TECHNICAL RESEARCH CENTRE OF FINLAND 17/11/2010

Use of COMSOL Multiphysics

= Structural mechanics module for momentum balance equation
 modified bulk and shear moduli + use of weak contribution

= General Form PDEs for rest of the equations

= Solution strategy:

1.solve energy equation, Clausius-Clapeyron equation, liquid,
vapor and air mass balances as fully coupled problem

2.solve momentum and mass balance equations
= Solvers:
 time dependent solver: implicit Euler (1st order BDF)
* nonlinear solver: Newton with high number of iterations
e linear solver: MUMPS
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Current status

* The implementation of the model is on test stage

* The progress is somewhat slow because the development of the
model is an extra project currently

= We have come to a conclucion that the conceptual and the
mathematical model require some modifications and extensions to
describe the behaviour of bentonite in the parameter scale that we
want

* Therefore, we have to do some theoretical work before we
continue the implementation

* by theoretical work, we mean inclusion of some micro-scale
phenomena





