
Two Dimensional FEM Simulation of Ultrasonic Wave 
Propagation in Isotropic Solid Media using COMSOL 

 
Bikash Ghose1*, Krishnan Balasubramaniam2*, C V Krishnamurthy3, A Subhananda Rao1 

                                                           
1 High Energy Materials Research Laboratory, Sutarwadi, Pune, India PIN 411021 
2 Center for Non-Destructive Evaluation, Dept of Mechanical Engg, IIT, Madras, Chennai - 36 
3 Department of Physics, IIT Madras, Chennai – 36 
* Author for correspondence: ghose.bikash@hemrl.drdo.in, balas@iitm.ac.in 

 
Abstract:  
Ultrasonic wave propagation in solid can be 
modeled using Finite Element Method (FEM) 
that helps in understanding of the interaction of 
wave with material. The FEM uses various 
parameters which need to be optimized properly 
to obtain the solution closer to the exact one. A 
two dimensional FEM model is designed in 
COMSOL and has been simulated for ultrasonic 
wave propagation in an isotropic solid media to 
optimize the FEM parameters for getting closer 
solution. The change in the shape of incident 
wave, amplitude and frequency with respect to 
the change in length of element and time steps 
has been studied. It was observed that free 
meshing provided in COMSOL with triangular 
element is capable of simulating the wave 
propagation for the ratio of wavelength to the 
element length of more than 8. The time steps 
required for the simulation to obtain proper 
result should be better than that is merely 
satisfied by CFL criteria.   
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1. Introduction 

Ultrasonic Testing (UT) is one of the 
important Non-Destructive Evaluation (NDE) 
technique widely used for characterisation of 
materials as well as detection and 
characterisation of flaws present in the material 
used in various industries. Understanding of 
ultrasonic wave propagation and its capability 
for flaw detection is an important aspect for 
proper evaluation of wave characteristics for 
characterisation of material or detection of flaws. 
The ultrasonic wave propagation can be 
simulated using Finite Element Method (FEM). 
The simulation parameters used in FEM plays 
very important role for the correctness of the 
obtained data.  This paper presents the Finite 
Element Method (FEM) simulation of ultrasonic 
wave propagation in isotropic solid media using 

COMSOL. The ultrasonic wave characteristics 
like shape of wave, frequency content, and wave 
amplitude of the onward and reflected 
propagated wave in material with respect to 
important simulation parameters like time step, 
element length has been studied for getting 
proper solution. 
 
2. Two Dimensional FEM Model of 
ultrasonic wave propagation 

A two-dimensional finite element model for 
propagation of ultrasonic wave in an isotropic 
solid media has been studied with COMSOL.  
2.1 Material and ultrasonic wave properties 

The material chosen was steel with following 
properties 
Young’s Modulus (E) = 2 × 1011 Pa 
Poisson’s ratio (ν) = 0.33 
Density (ρ) = 7850 kg/m3  
Ultrasonic velocity (CL) (longitudinal wave) = 
5850 m/s 
Wavelength of the longitudinal ultrasonic wave 
(λL) = CL/20×103 s-1 = 0.2925 m 
2.2 Incident ultrasonic wave 

A 20 kHz frequency signal has been applied 
to the isotropic material. The signal is chosen as 
the 3 cycles of cosine function and operated with 
a hanning window. The applied disturbance as 
the input signal is applied to a line of length 0.04 
m which means the transducer has been modeled 
as the disturbances on a line. The initial 
disturbances is given as the displacements in the 
–ve y direction only for modeling the normal 
incidence of ultrasonic wave. The input signal is 
provided from a data file and the linear 
interpolation is considered for the value of 
displacement at the undefined time in the data 
file.  
The time domain representation of input 
displacement pulse used in the model is shown in 
the figure 1. The frequency content of the input 
signal was evaluated as the Fourier transform of 
the time domain signal and is as shown in figure 
2. 
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Figure 1: Input displacement pulse as source 
excitation 
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Figure 2: Input signal in frequency domain 
 
2.3 Model Geometry 

As the study was mainly focused on the bulk 
longitudinal wave propagation, a simple 
rectangular geometry has been chosen and the 
dimension of the geometry was chosen such that 
no side wall reflection reaches to the point of 
observation within the specified time. The initial 
disturbance was applied on a line of length 0.04 
m located at the centre of the top horizontal line. 
For study of point sources as the model for the 
transducer, nine numbers of equally spaced 
points of initial disturbances are located within 
the line length of 0.04 m which was earlier 
considered as the line source. As all the 
observations were made for the longitudinal 
wave only the signal was observed on the 
perpendicular line that passes through the middle 
of the source.  
2.4 Meshing 

The mesh was generated automatically with 
the triangular elements. Free meshing provided 
in COMSOL was used for the generation of 
mesh. The elements were chosen as uniform 
through out the sub-domain. The mesh has been 
refined at the region below the excitation source. 
Minimum mesh quality that has been ensured for 
each of the model that has been solved is 0.7 
with an element area ratio of about 0.1. 

2.5 Application Mode 
For modeling of the two dimensional 

geometry, the case of plane strain was 
considered because of the dimension of the 
material considered to be large enough in the 
third dimension as compared to the x and y 
directions. Time dependent analysis, Lagrange 
quadratic type of element and time dependent 
solver was used for the solution. The duration of 
time span for the solution was chosen such that 
back-wall reflected signal comes back to the 
front wall or from where excitation started. 
All the simulations were carried out in the 64-bit 
XP environment. 
3. Simulation Results for Effect of 
Maximum Length of Element and Time 
Steps 
3.1 Effect of Maximum Length of Element 

The length of element in the mesh used for 
solution of any FEM model plays a crucial role 
for correctness of the obtained solution. The 
length of the element needs to be smaller for 
evaluation of proper solution whereas as the 
length of element decreases the cost of 
computation increases. So it is always necessary 
to evaluate the optimum element length for 
correct solution along with the lesser 
computational efforts.  
In the current study, the maximum element size 
(∆xmax) was varied from λL /2 to λL /16 and the 
model was simulated for the ultrasonic wave 
propagation. λL is the wavelength of the 
longitudinal ultrasonic wave propagated in the 
direction of incidence. Following table shows the 
different values of 

maxx
L

∆
λ  for which the 

simulation was carried out along with the 
corresponding maximum element size for each 
case. 
The time steps chosen initially for simulation for 
different ∆xmax is 2.5×10-6 s. The reason behind 

Ratio of Wavelength to 
∆xmax (λL /∆xmax ) 

Maximum element 
size (∆xmax) (m) 

2 0.1462 
3 0.0975 
4 0.0731 
5 0.0585 
8 0.0366 
9 0.0325 
12 0.0244 
16 0.0182 



the chosen time step is as follows. 
As per CFL criteria, the critical time steps to be 
used for simulation on FEM model for a time 
dependent solver is

phC

x∆ , where Cph is the 

ultrasonic phase velocity. As only longitudinal 
ultrasonic wave was considered for this study, 
the Cph value was taken as the longitudinal 
ultrasonic velocity in the steel material which is 
about 5850 m/s. In this regard, for different ∆xmax 
values different ∆t should be evaluated which is 
to be used for solution. The critical time ∆t 
would be smallest for the smallest value of ∆xmax. 
If the smallest ∆xmax was chosen for evaluating 
∆t then the ∆t must be sufficiently smaller for 
other cases. Hence ∆t was evaluated for the least 
value of ∆xmax . The least value of ∆xmax is 0.0182 
m and correspondingly the critical value of ∆t 
was calculated to be  

s
sm

m

C

x

C

x
t

Lph
critical

6maxmax 101.3
/5850

0182.0 −×==∆=∆=∆  

The value of ∆t used in the simulation was 
2.5×10-6 s which is less than the critical time 
steps for the case of λL /∆xmax =16. 
 The ultrasonic signals were plotted at 
different perpendicular distances from the middle 
of line source for different values of 

maxx
L

∆
λ  at t = 

4×10-4
 s. A cross sectional plot (line profile for 

the plot of displacements Vs distances or 
position) was also plotted at t = 4×10-4

 s. The 
time t = 4×10-4

 s is chosen for the above said 
plot as by that time the signal just reaches to the 
back-wall. The above plots were used to evaluate 
the minimum value of 

maxx
L

∆
λ required for the 

solution to converge irrespective of time steps if 
the solution remains consistent for the various 
element lengths. 
The signal at a various perpendicular distances 
from the middle of the line source was plotted 
for different λL /∆xmax as shown below.  
The following plots (figure 3) show the forward 
propagating signal at a time of 4×10-4 s plotted 
along the perpendicular line passing through the 
centre of the line source. 
 
Figure 3: Onward propagating wave signal at 
various distances for different wavelength to 
element length ratio 
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(a) At 0.1 m 
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(b) At 0.3 m 
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(c) At 1.0 m  
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Figure 4: Line profile (Displacement Vs Distance 
from source) at 0.0004s for different wavelength to 
element length ratio 
 



The plot indicates that the solution converges for 
λL /∆xmax = 8 or more for constant time steps 
which is sufficient for λL /∆xmax = 16 as per CFL 
criteria. In each of the above cases, the time step 
was taken as ∆t = 2.5 × 10-6 s. The ∆t taken is 
sufficient as per CFL criteria i.e., ∆t ≤ (∆x/CL). 
∆xmax for condition of λL /∆xmax = 16 is 0.0182 
which accounts for the ∆t as ∆x/CL = 
0.0182m/5850 m/s =3.1×10-6 s.  
The plot indicates that oscillations still persists 
after complete passing out of the signal which 
may be because of the lesser ∆x. This plot also 
indicates the converging of the solution for the 
ratio (λL /∆xmax) ≥ 8.  
It has been observed that whether the time steps 
are taken from solver or exactly what has been 
given does not make any difference to the 
propagating signal. 
3.2 Effect of time steps 
All of the above solutions have been obtained for 
the input signal of 20 kHz. The sampling of the 
signal was done at 1 MHz and the time steps 
used was 2.5×10-6 s for all of the above solution. 
As per CFL criteria the time steps should be less 
than ∆x/CL. As per the criteria, for example, for 
the maximum element length of λL /10 the time 
steps should be ≤ (λL /10×CL) that means if 
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In the above cases 
maxx
L

∆
λ varied from 2 to 16 

whereas in all the cases time step was taken 
as s

sf
t 6

13 105.2
102020

1
20

1 −
− ×=

××
=

×
=∆  which 

was considerably lesser than required as per the 
criteria.  
As already been observed, irrespective of the 
better time steps the solution converges only for 

maxx
L

∆
λ ≥ 8 i.e. there is no more change in the 

solution beyond 
maxx
L

∆
λ = 8.  

 Unfortunately, although there is no change in 
the signal for any further reduction of element 
length but the signal so far obtained is not as per 
expected one. The ultrasonic wave form should 
not change after propagated through an isotropic 

media. The amplitude was expected to change 
consistently but at least not the shape of the input 
signal. In this regard, it may be thought that 
probably time steps used so far was not sufficient 
for a correct solution although the CFL criteria 
was satisfied well for all of the above cases. 
In this regard, the time steps used were further 
reduced for three values of 

maxx
L

∆
λ to obtain the 

solution and checked for the convergence of 
solution as per the expected result. 
Case I: 

maxx
L

∆
λ =8 

For the case of 
maxx
L

∆
λ = 8, the solution is 

obtained for the following time steps 
(i) As per CFL criteria 

s
sm

m

C

x
t

L

61026.6
/5850

0366.0 −×==∆≤∆  

(ii)  st 6105 −×=∆  
(iii)  st 6102 −×=∆  
(iv) st 6105.2 −×=∆  
(v) st 6100.1 −×=∆  
(vi) st 6105.0 −×=∆  
(vii)  st 6102.0 −×=∆  

 
The following plots (figure 5) show the signal at 
a perpendicular distance of 1.0 m from the 
middle of the line source for different time steps. 
For all the following cases the ratio

maxx
L

∆
λ  is taken 

as 8. 

Figure 5: Time domain signal at different time 
steps for 

maxx
L

∆
λ = 8 at 1.0 m 

 
 (a) Original applied signal at source 
 



 
(b) st 61026.6 −×=∆  (Critical time steps as per 
CFL Criteria) 
 

 
(c) st 6105 −×=∆  
 

 
(d) st 6105.2 −×=∆  

 
(e) st 6100.2 −×=∆  
 
 

 
(f) st 6100.1 −×=∆  
 

 
(g) st 6105.0 −×=∆  



 
 (h) st 6102.0 −×=∆  

Case – II: 5
max

=
∆x

Lλ
 

(i) As per CFL criteria 

s
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t

L

61010
/5850

0244.0 −×==∆≤∆  

(ii)  st 6105 −×=∆  
(iii)  st 6105.2 −×=∆  
(iv) st 6102 −×=∆  

(v) st 6101 −×=∆  

(vi) st 6105.0 −×=∆  

(vii)  st 6102.0 −×=∆  
The following plots (figure 6) show the signal at 
a perpendicular distance of 1.0 m from the 
middle of the line source for different time steps. 
For all the following cases the ratio

maxx
L

∆
λ  is taken 

as 5. 

Figure 6: Time domain signal at different time 

steps for 
maxx
L

∆
λ = 5 at 1.0 m 

 
(a) Original applied signal at source 
 

 
(b) st 61010 −×=∆  (Critical time steps as per CFL 
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(h) st 6102.0 −×=∆  

Case –III: 12
max

=
∆x

Lλ  

(i) As per CFL criteria 
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(ii)  st 6105.2 −×=∆  

(iii)  st 6101 −×=∆  

(iv) st 6105.0 −×=∆  
The plots in figure 7 show the signal at a 
perpendicular distance of 1.0 m from the middle 
of the line source for different time steps. For all 

the following cases the ratio
maxx
L

∆
λ  is taken as 12. 

Figure 7: Time domain signal at different time 

steps for 
maxx
L

∆
λ = 12 at 1.0 m 

 
(a) st 6105 −×=∆  

 
(b) st 6105.2 −×=∆  
 



 
(c) st 6100.1 −×=∆  

 
(d) st 6105.0 −×=∆  
To compare the plots for convergence of the 
solution in terms of time step of 0.5×10-6 s, the 
total signal is shown below for three different 

maxx
L

∆
λ values. 

Figure 8: Comparisons between converged solution 

at 
maxx
L

∆
λ = 8, 12 and 5 at st 6105.0 −×=∆  

 
(a) 12

max

=
∆x

Lλ   st 6105.0 −×=∆  

 

 
(b) 8

max

=
∆x

Lλ  st 6105.0 −×=∆  

 
(c) 5

max

=
∆x

Lλ  st 6105.0 −×=∆  

The signal again indicates that the optimum 
value of the ratio

8
max

=
∆x

Lλ . More ripples in the 

signal are seen for higher ∆xmax in spite of very 
less ∆t value. 
4. Effect of line and point source excitations 
In all of the earlier cases the source was modeled 
as the line source which gets excitation as a 
whole. It was also possible to model the source 
as per Huygen’s principle i.e., considering the 
source as many secondary sources of excitations. 
Few of the simulations were carried out by 
considering point sources as the detector. In that 
case, within total 0.04 m length of source, nine 
numbers of equidistant source excitation points 
were placed. The simulation was done for line as 
well as point sources for 8

max

=
∆x

Lλ  

st 6105.2 −×=∆ .  
The following plots in figure 9 show the 
ultrasonic signal for both cases (i) for line source 
(ii) for point sources observed at different 
perpendicular distances from middle of source. 



The line profile (displacement Vs distance from 
source) was also plotted at a time instant of 
4×10-4 s. 

Figure 9: Comparison between source with 
excitation on line and excitation on points 
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5. Frequency content of the forward 
propagated signal 
The frequency content of the onward 
propagating wave has been evaluated by Fourier 
transform of the onward propagating wave. The 
figure 10 shows the onward propagating wave in 



time and frequency domain for three cases of 

=
∆ maxx

Lλ  12, 8 and 5 for st 6105.0 −×=∆  

(converged final solution for each case) 

Figure 10: Time and Frequency domain signal for 
onward propagating wave  
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6. Frequency content of the back-wall 
reflected signal 
The figure 11 shows the back-wall reflected 
wave in time and frequency domain for three 
cases of =

∆ maxx
Lλ  12, 8 and 5 for st 6105.0 −×=∆  

(converged final solution for each case) 
 



Figure 11: Time and Frequency domain signal 
for reflected wave 
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7. Discussion 

All results shown in figure 3 were obtained 
for the time steps of 2.5×10-6 s which is well 
below the value calculated using CFL criteria. 
The time domain signal shown in figure 3 (a) 
indicates that for all the cases of λL /∆xmax , the 
signal follows the same time profile path (no 
change in time scale) till the major signal passes 
through the point of observation. For all the 
cases, after the major signal passes through, 
considerable amount of the residual displacement 
are still shown to be exists. At that region, the 



curve for λL /∆xmax = 2, 3 &4 does not follow to 
curves for λL /∆xmax = 5, 8, 9, 12 &16. There is 
minor variation seen for the case of 5 with 
others. For the main signal, although there is no 
change in terms of time scale but it is seen that 
the amplitude is less in case of higher value of λL 

/∆xmax . When the same signal is observed at a 
further distance it is seen from figure 3(b) that 
there is change in the shape of wave form that 
was propagated from the earlier point. From 
figure 3(a) to 3(c), it is observed that the solution 
for the major signal always follows for all λL 

/∆xmax whereas at the region of residual 
displacement, the solution getting converged 
only from λL /∆xma = 5 onwards. But in spite of 
very poor value of λL /∆xmax = 2, 3 & 4, the 
solution evolved correctly in terms of time for all 
λL /∆xmax .  
Again for all plots under figure 3, the signal is 
not of the shape as expected. For a non-
dispersive media like steel, the ultrasonic signal 
must not change its shape during propagation. 
This indicates that in spite of following the CFL 
criteria also the signal could not really converge 
for the amplitude details. Figure 4 shows that for 
λL /∆xmax = 2, 3 & 4 there is considerable error in 
the residual signal (which remains after the 
actual signal pass through the point of 
observation). 
Figure 5 indicates that the time steps used earlier 
for obtaining the solution was not sufficient 
although it followed the CFL criteria. Because of 
change in time steps, there is a change in both 
frequency information as well as intensity 
information of the propagating signal. At the 
time step of 0.5×10-6 s only, the propagated 
signal resumes the shape of original signal. 
Further decrease in the time step below 0.5×10-6 

s does not make any further improvement of the 
signal which indicates the possible convergence 
of the solution.  
Similarly the solution converges for the case of 
λL /∆xmax = 8 only for time steps of 0.5×10-6 s. 
Even for λL /∆xmax = 5 also the solution converges 
with the time step of 0.5×10-6 s. This clearly 
indicates that time step is a very important 
parameter for getting correct solution for wave 
propagation. For very poor value of λL /∆xmax like 
2 or 3 can at least give some information 
regarding the signal with a better value of ∆t but 
any good value of ∆x is of no use if a proper 
value of ∆t is not used for obtaining the solution. 

At least in three cases it is seen that the required 
time steps is about (1/100*f) which is 
independent of the value of ∆x. The value of ∆x 
has to be taken independently at about λ/8.  
From figure 9 it is seen that at least for the 
normal incidence of ultrasonic beam no 
difference in terms of shape of the signal is 
observed between the solutions obtained for two 
ways of excitation viz. excitation on a line and 
excitation on points to resemble the source. The 
only difference observed is in terms of the 
intensity. Intensity observed in case of point 
sources as the excitations is lesser than that 
observed in case of line source. The observation 
is obvious as power input in the case of line 
source will always be more than that from the 
point sources as the excitations.  
Figure 10 shows that there is no substantial 
change in the frequency domain signal for the 
onward propagating wave for λL /∆xmax = 8, 12 & 
5 in the final converged solution. Similarly no 
difference is observed in the frequency domain 
reflected signal. However a little difference in 
intensity is observed in both onward and 
reflected wave. Intensity is higher for λL /∆xmax = 
5 and least for λL /∆xmax = 12. 
 
8. Conclusions 
Ultrasonic wave propagation can well be 
modeled with COMSOL with excitation on a 
line segment as transducer or excitations on 
points on a line segment. The triangular element 
free meshing can be used for the simulation of 
ultrasonic wave propagation for a value of λL 

/∆xmax = 8 or more. The time steps should be 
used near to 1/100*f. Smaller value of λL /∆xmax 

such as 5 can also be used with expected smaller 
variation of amplitude information with use of 
proper time steps. No substantial difference in 
the frequency content of the onward as well as 
back-reflected converged solution is observed. 
 
 
 




