

Shanghai MicroPort Medical (Group) Co., Ltd. **Ismael Rattalino, PhD** System Engineer, Microport CRM Ismael.rattalino@crm.microport.com +39 329 186 0032 MicroPort \bigcirc

Company Overview

Every 12 seconds MicroPort products are used to provide lifesaving medical intervention and life-quality improving care to patients around the world.

- Nearly 4,500 employees worldwide
- Over 260 products offered
- Over 5,000 hospitals product coverage
- Nearly 1,400 applied trademarks
- Over 100 ongoing R&D projects

ELECTROPHYSIOLOGY SURGICAL MANAGEMENT

LIFESCIENCES (DIABETES & ENDOCRINAL MANAGEMENT)

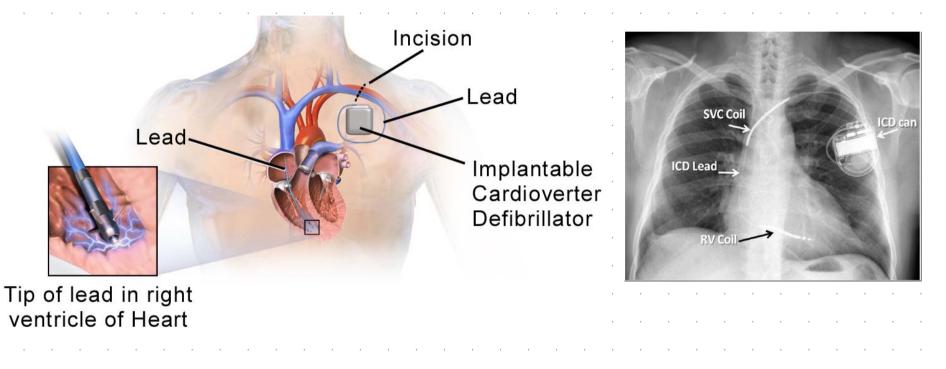
ORTHOPEDICS -

NEUROTECH (NEUROVASCULAR)

CRM (CARDIAC RHYTHM MANAGEMENT) CARDIOVASCULAR STRUCTURAL HEART

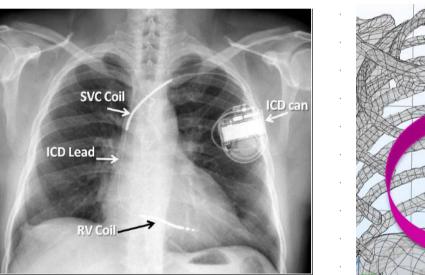
ENDOVASCULAR DEVICES)

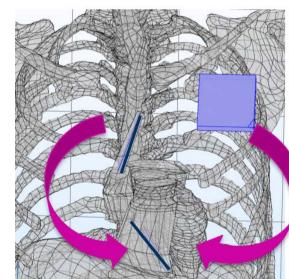
(ENDOVASCULAR & PERIPHERAL


- One of the top 5 worldwide cardiac rhythm management device manufacturers, focusing on development and manufacturing of systems to treat cardiac rhythm disorders and heart failure.
- Global workforce of over
 900 employees, with major
 facilities across Europe and
 in over 10 countries
- Provided over 1 million
 CRM products for the past
 40 years
- Innovation is in our DNA

UNIVI DUSITICOS I TUUUCIS C

Therapies	· · · · · · · ·	· · · · · · ·	· · · · · ·	· · · · · ·
Pacemaker (PM)	Defibrillator (ICD)	Lead	
KORRA 250 DR DDR AIST B SH ODDERTON MICHORY CHARLE - THAY SORIN			F	
Treatment of Bradycardia (heart rate slower than normal rate)		Placing electrode	es in different p	oarts of the body/h
	nt of Bradycardia & Ta e faster or improper)	achycardia	· · · · · ·	· · · · · ·


PRODUCTS & THERAPIES


CRM Therapy

Defibrillation Therapy

2 Configurations:

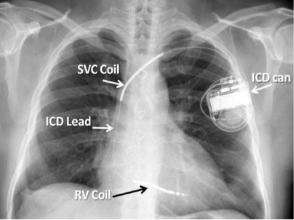
RV to CAN — RV to CAN & to SVC

Typical Parameters:

• Voltage 200 ÷ 600 V

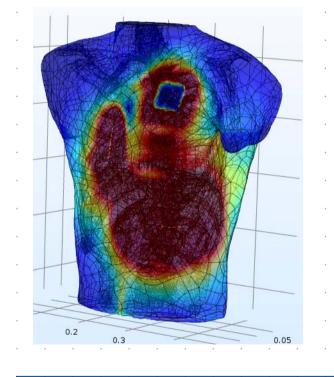
• Current 2 ÷ 6 A


Time 5 ÷ 10 ms


• Energy 5 ÷ 40 J

DEFIBRILLATION THERAPY

CRM Clinical Testing



- Minimum 3 runs of animal testing (15 pigs/dogs per run) and 3 runs of human testing (15 patients per run)
- Time consuming, approx 1 year for 3 runs
- Expensive, hundreds k€ per run
- Trials repetition in case of failure (iterative approach) → Multiplications of Time, Cost & Risk
- for the patient
- Reducing the Animal testing preserving the same reliability is ethical
- Reducing the risk of failure of the run (animal or human) is ethical

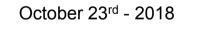
Simulation as alternative to Ammai

•

Testing

•.	Reducing the Animal Testing preserving the same reliability is ethical
•	Reducing the risk of failure of the run (human or animal) is ethical
•	Simulation is used to select the best promising configurations
•	Simulation reduces the risk of failure of the animal and human testing trials
•	Simulation decreases the need of animal testing

Do it right the first time reducing the burden of the animal and human testing



Synopsys Simpleware

Microport CRM Torso model generation

Dipl.-Ing. Denis Feindt (Business Development Manager, Sr. Staff)

Synopsys Today

© 2018 Synopsys, Inc. 12

SYNOPSYS°

Synopsys - Simpleware Product Group

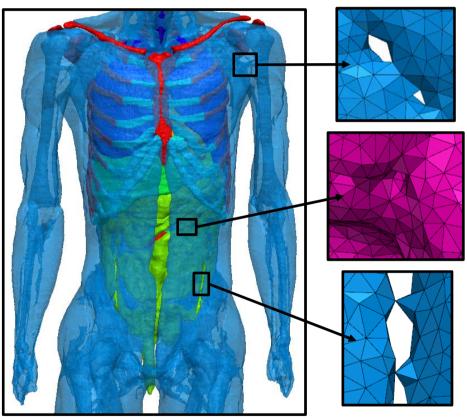
- Developers of high-end 3D image processing software
- Dedicated sales, support and service teams
- Global presence
- Clinical and broader life sciences / materials applications

© 2018 Synopsys, Inc. 13

SYNDPSYS[®]

Simpleware Software Solutions & Applications

GUI-based high-end 3D image processing platform which provides comprehensiverange of tools for:


- Visualization including animation 3D data
- Filtering and segmentation
- Measurement and quantification
- CAD and image integration
- 3D print, CAD and simulation model generation

G	ied	om	etry	: Dı	Jk	e E	30	dy	N	10	de	el														
 		•			•	•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		
			Τοι	SO ·																						
		A										Tł	ne b	ody	/ is	"Du	ike"	' fro	m t	he '	virtu	lal				
			40	E	31									of												
					21																					
		VI		1.14																						
											· ·			//wv					n/ne	ws	<u> </u>					
		1		1										<u>s/ne</u> atio					, /irtu	al-t	fam	ilv-				
				71										ls-e												
			1 A	1A		R																				
				-		V																				
 																-		-	-				-			

Simpleware model generation

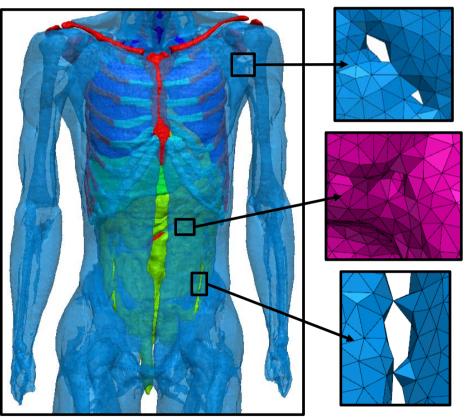
Processing original STLs

© 2018 Synopsys, Inc. 16

SYNDPSYS°

Original geometries – Issues for Simulation

Original geometries in STL format


Some issues with individual part triangulation

- Holes
- Vertex-vertex connections
- Non-manifold triangle edges

Many parts with complicated interaction

- Small gaps
- Overlaps

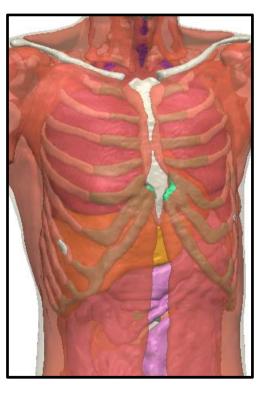
Not possible to use for meshing

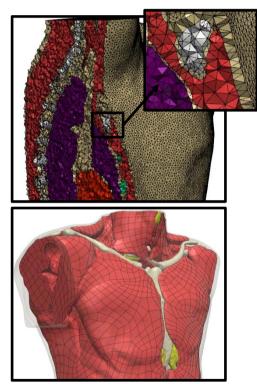
© 2018 Synopsys, Inc. 17

SYNDPSYS"

Simpleware model generation

Processing original STLs

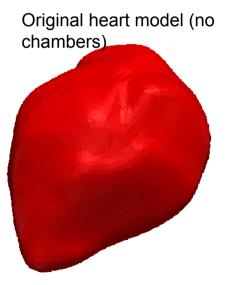

Models produced by Simpleware:


- Simulation-ready volume meshes for COMSOL Multiphysics
- NURBS IGES files for geometry editing and re-meshing

Smooth, accurate geometries

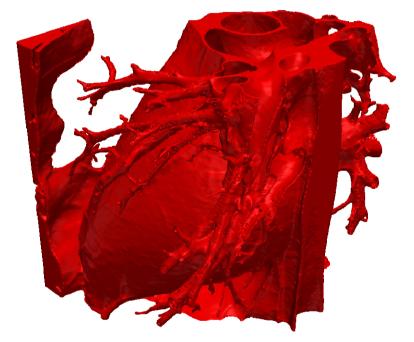
Correct topology, no gaps

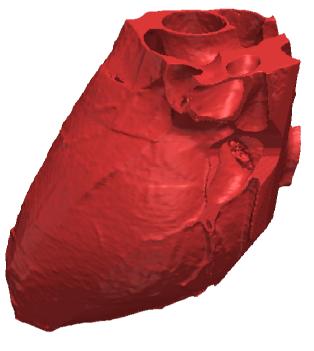
Suitable for EM simulations in COMSOL Multiphysics



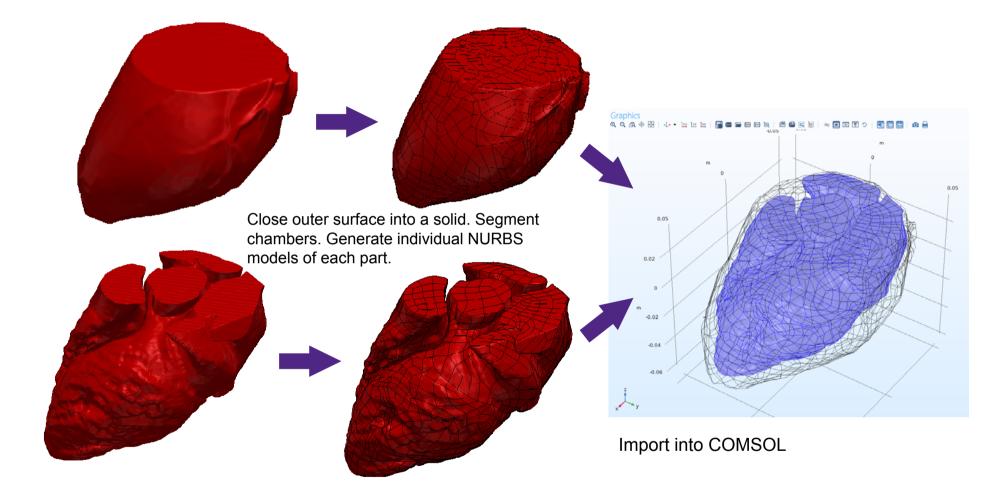
© 2018 Synopsys, Inc. 18

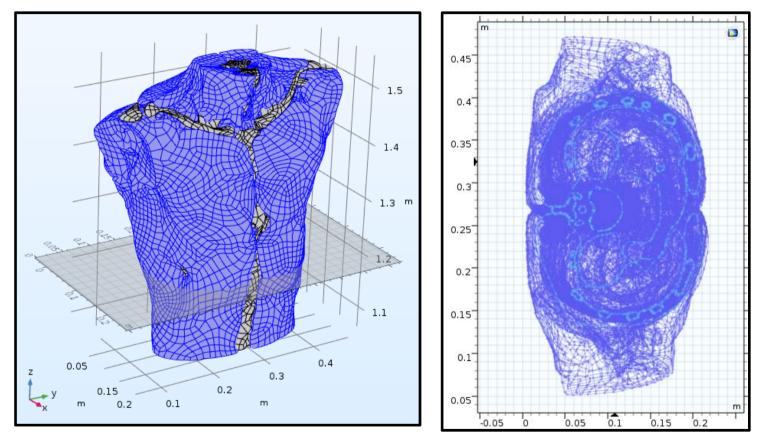
SYNOPSYS[®]


Simpleware – Detailed Heart Model from separate dataset


Improved heart model (with chambers)

© 2018 Synopsys, Inc. 19


SYNDPSYS[®]

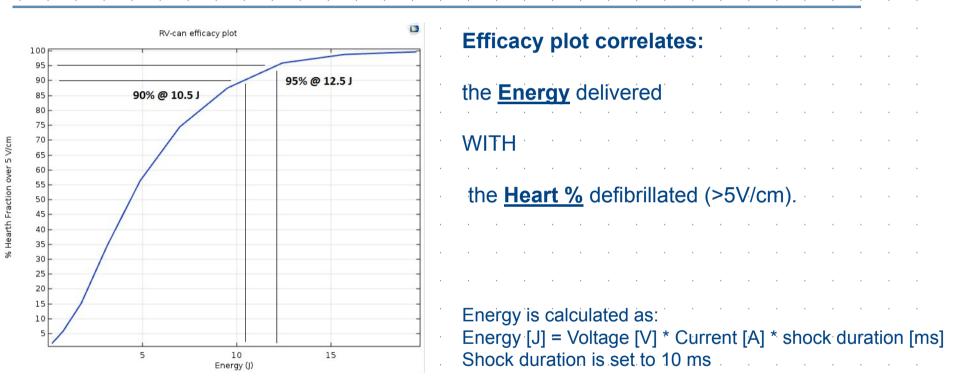

Voxelise STL, use image processing tools to remove unnecessary details.

Synopsys°

SYNDPSYS°

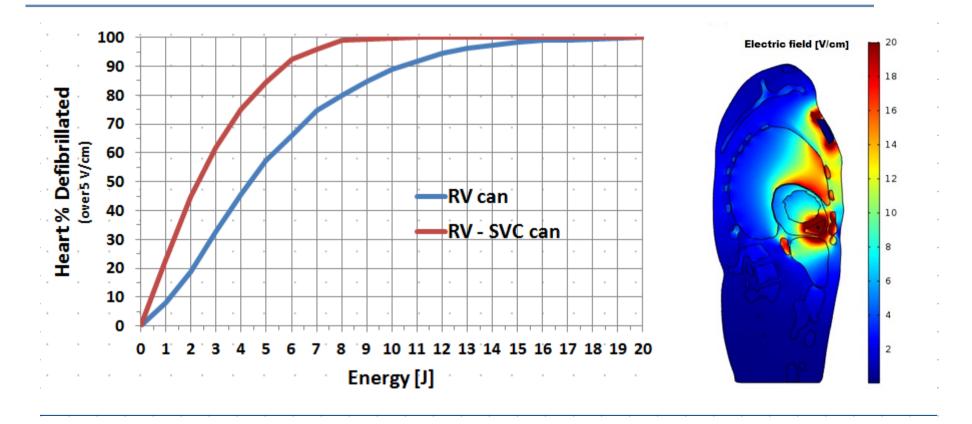
Simpleware models in COMSOL Multiphysics

© 2018 Synopsys, Inc. 22


SYNDPSYS[®]

Simulation procedure

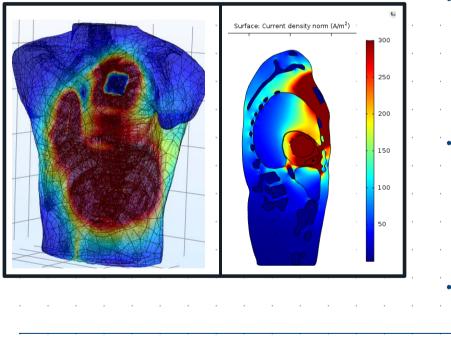
· ·	1) Place the electrodes in the body
	2) Assign conductivity to tissue
	3) Apply Voltage
	4) Output is the current pathway and the electric field
	inside the heart
· ·	


TISSUES & CONDUCTIVITIES.

Shock Efficacy Plot

SHOCK EFFICACY PLOT

Shock Results


SHOCK & RESULTS.

Model Validation ICD versus literature

		Configuration	Energy [J]	Voltage [V]								
		Model Literature	for 90-95%	for 90-95%								
· ·	· ·	Single coil	11.25 ± 1.25 (10 ÷ 12.5)	380 ± 20 (360 ÷ 400)	:					•		•
		Single coil	10.1 ± 5 (5.1 ÷ 15.1)	355 ± 87 (268 ÷ 442)								
· ·		Double coil	6.3 ± 0.7 (5.6 ÷ 7)	235 ± 15 (220 ÷ 250)			•		•		•	•
		Double coil	8.7 ± 4 (4.7 ÷ 12.7)	312 ± 71 (241÷ 383)								
	· · ·											•
	E	Error between 7-	-20% dependi	ng on the c	onfi	qur	atio	n				

MODEL VALIDATION & DATA FROM LITERATURE .

Conclusions

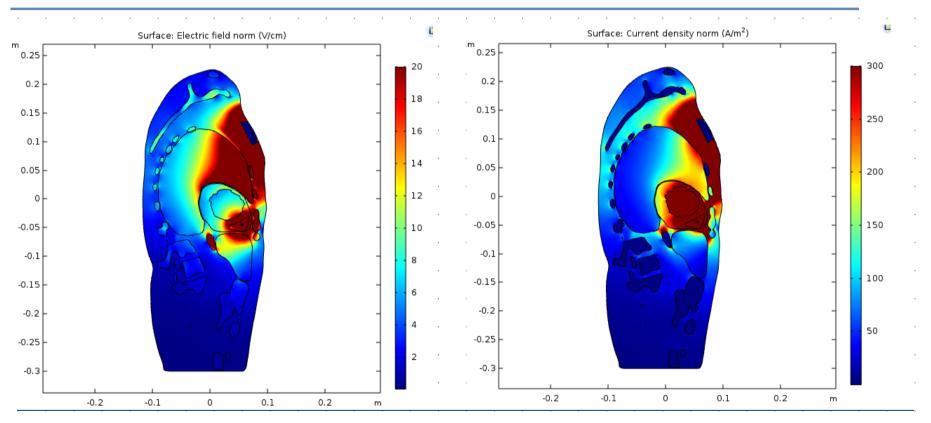
TESTING NEW CONFIGURATIONS- GUIDELINES

•	Conf	igur									atior	n is .
	belle											
•	The elect	trod	es	(Ca	pak	oility	y of	pe	-			
	posi	tion	of	the	e el	ectr	rode	es)				
	posi	tion	of	the	e el							
		tion	of	the	•							

End of presentation Thanks for your attention: Questions Additional slides available in dedicated Annex at the end.

END

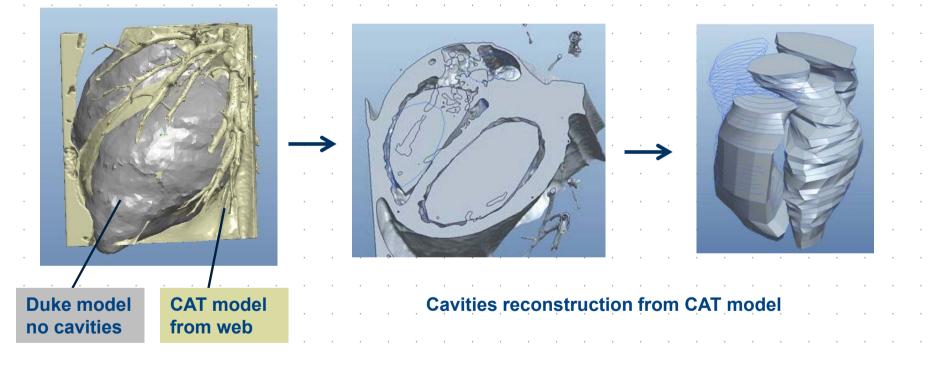
Intentionally left blank


22 nd of June 2018				
	Annex			
	Additional slides			
MicroPort [™]				

RV to SVC & can – Pathways of Electric field and Current Density

ų - - - į Surface: Electric field norm (V/cm) Surface: Current density norm (A/m²) m 0.25 0.25 300 0.2 0.2 18 0.15 0.15 250 16 0.1 0.1 14 0.05 0.05 200 12 0 0 -0.05 10 -0.05 150 -0.1 -0.1 8 100 -0.15 -0.15 -0.2 -0.2 50 -0.25 -0.25 -0.3 -0.3 -0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2 m m

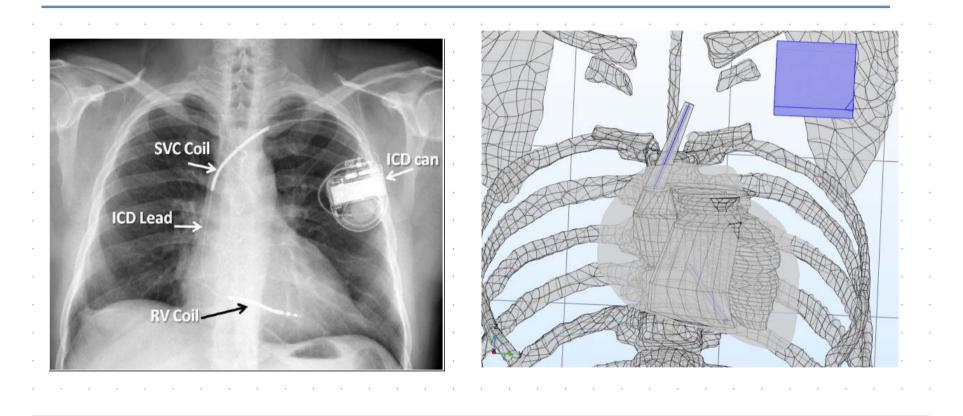
RV TO SVC&CAN ELECTRIC FIELD AND CURRENT DENSITY



RV-CAN ELECTRIC FIELD AND CURRENT DENSITY

Geometry: Heart cavities

The cavities have been reconstructed from a CAT of another heart, freely available on the web.


Shock was a star was a									
Stimulation Threshold									

The mass criterion for cardiac defibrillation is defined as 90% of the myocardium with a voltage gradient >5 V/cm. https://www.jstage.jst.go.jp/article/circj/80/4/80 CJ-15-1258/ html

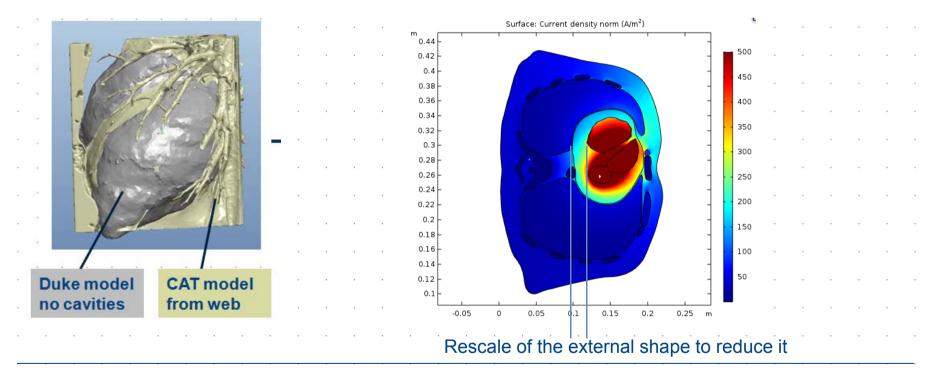
The assumption in the model is that the defibrillation is effective when the 90÷95% of the myocardium is over 5 V/cm.

Considering the conductivity of the cardiac mass of 0.3 S/m, **5 V/cm is correlated with a Current Density of 150 A/m^2. V=R I**; V= (x I) / (A σ) \rightarrow dV/dx = E = I / (A σ) = J / $\sigma \rightarrow$ J = E σ

Geometry: SVC coil positioning

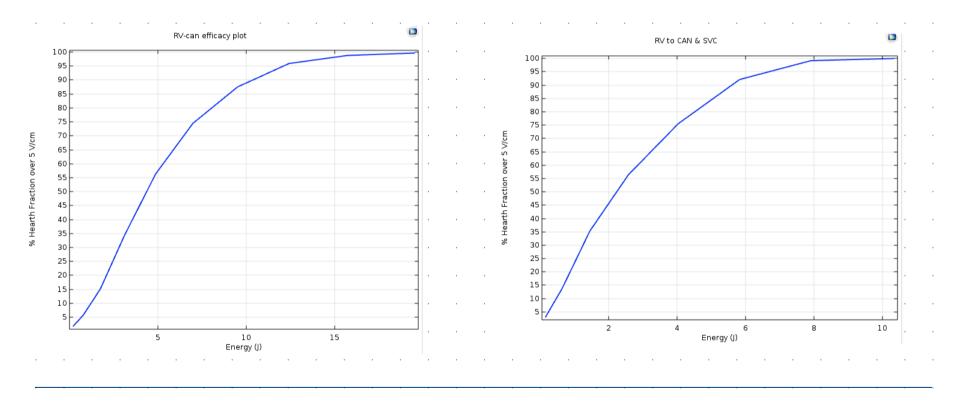
GEOMETRY SVC COIL POSITIONING

Geometry: Cavities characterization

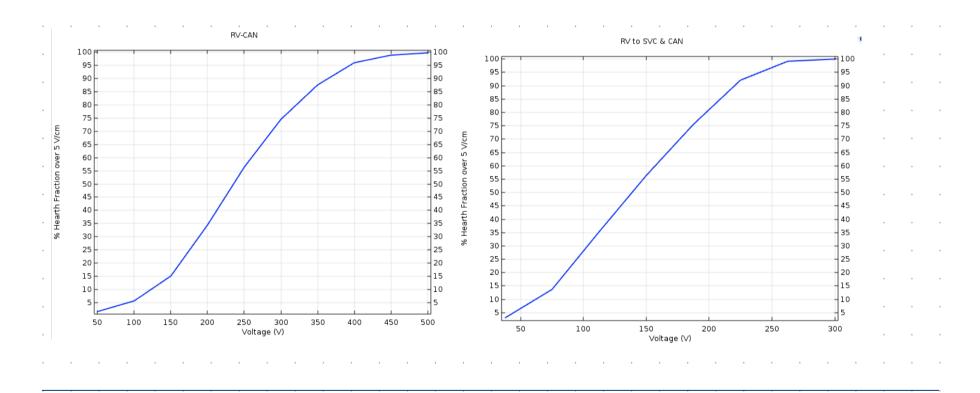

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.<

Configuration	RV	LV		
Real volume systolic [cc]	47	50	· ·	
Real volume diastolic [cc]	142	144		
Real Average [cc]	94,5	97		
Model Volume [cc]	91	107		
https://en.wikipedia	.org/wiki/Ventri	cle (heart)		

GEOMETRY CAVITIES CHARACTERIZATION


Geometry possible improvements

Reconstruction of the external shape of the heart that seems "larger " compared to the cavities and the torso


GEOMETRY POSSIBLE IMPROVEMENTS

Efficacy plots RV-CAN % RV –SVC&CAN

Efficacy plots in Voltage RV-CAN, RV-SVC&CAN

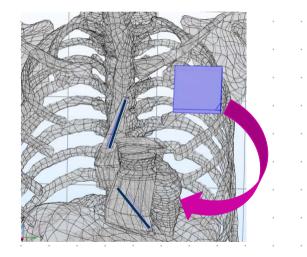
EFFICACY PLOTS - VOLTAGE.

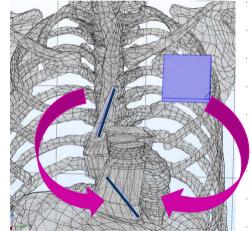
Model Validation & reference data

Configuration Model Literature	Energy [J]	Voltage [V]	Current [A]
Single coil	11.25 ± 5 (10 ÷ 12.5)	380 ± 20 (360 ÷ 400)	2.8 ÷ 3.1
Single coil	10.1 ± 5 (5.1 ÷ 15.1)	355 ± 87 (268 ÷ 442)	literature 4.6 ÷ 8.4 derived: 1.9 ÷ 3.4
Double coil	6.3 ± 0.7 (5.6 ÷ 7)	235 ± 15 (220 ÷ 250)	2.5 ÷ 2.8
Double coil	8.7± 4 (4.7 ÷ 12.7)	312 ± 71 (241 ÷ 383)	literature 5.9 ÷ 10.9 derived: 1.9 ÷ 3.3

				C Vol. 3 av 1998	

						Table 1. Pulse	Characteristics	at Defibrilla	tion Threshol
					ELECTROPHYSIOLOGY	Configuration	Energy (J)	Voltage (V)	Current (A)
					Comparison of Single- and Dual-Coil Active Pectoral Defibrillation Lead Systems	Single coil . (mean \pm SD)	10.1 ± 5.0	355 ± 87	6.5 ± 1.9
					MICHAEL R. GOLD, MD, PHD, FACC, MARY R. OLSOVSKY, MD, MICHAEL A. PELINI, MD, ROBERT W. PETERS, MD, STEPHEN R. SHOROFSKY, MD, PHD, FACC	Dual coil (mean ± SD)	8.7 ± 4.0	312 ± 71	8.4 ± 2.5
•	•	•	•	•	Baltimore, Maryland	p value	0.012	0.001	< 0.001

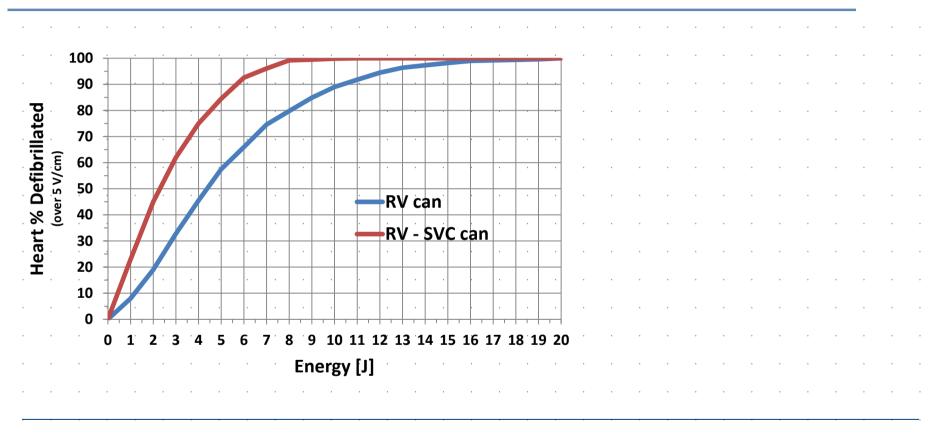

MODEL VALIDATION & REFERENCE DATA


Configuration	Energy (J)	Voltage (V)	Current (A)	Impedance (ohms)
Single coil (mean ± SD)	10.1 ± 5.0	355 ± 87	6.5 ± 1.9	57 ± 11
Dual coil (mean ± SD)	8.7 ± 4.0	312 ± 71	8.4 ± 2.5	39 ± 7
p value	0.012	0.001	< 0.001	< 0.001

Shock Configurations

RV to CAN

RV to CAN & SVC



SHOCK CONFIGURATIONS

Shock Results

