

Multiphysics Simulation of Isoelectric Point Separation of Proteins Using Non-Gel Microfluidics System

Anjan Contractor, Ashwin Balasubramanian, Gareth Hughes

Mission

To nurture and harvest scientific creativity to produce life changing technologies

Discoveries

Energy Storage through Electrochemistry

Chemical/Biological Defense and Countermeasures

Environmental Remediation

Medical Technologies

Current Protein Diagnostic Techniques

Protein Analysis -Enzyme-linked Immunosorbent Assays (ELISAs) -2D Gel Electrophoresis

Protein Detection -Mass Spectrometer

Expensive Immobile Hard to Maintain Slow

Remote Area Diagnostic

Yon M. Achieves. http://www.michaelyon-online.com

http://oregonstate.edu/dept/ncs

Isoelectric Point based Protein Separation

Song et al. from MIT's Biological Engineering Laboratory designed PI based protein separation

Song, Y., Hsu S., Stevens A.L., and Han J. Continuous-Flow pl-Based Sorting of Proteins and Peptides in Microfluidic Chip Using Diffusion Potential. Anal. Chem. (2006) 78(11): 3528-3536

Lynntech's Concept: Isoelectric Point based Protein Separation Chip

-High pH gradient at the exit of microfluidic channel. -Multiple chip configuration that can achieve pH resolution of 0.1

Design of Experiments Procedure

Design of Experiments Plackett-Burman 12 Runs

Plackett-Burman														
		Top inlet	Top inlet ionic	Middle	Middle inlet ionic	Bottom	Bottom inlet ionic	L over W					Response	
Number	Pattern	pH	strength	inlet pH	strength	inlet pH	strength	ratio	L	W over V	Flow rate	Max (pHA-pHB)	Max (Mean of dpH/dy -σ _{dpH/dy})	
1	+-++	Min	Min	Min	Max	Min	Min	Max	Min	Max	Max	-	H	
2	++++	Min	Min	Max	Min	Min	Max	Min	Max	Max	Max	-	<u>유</u>	
3	+++-	Max	Max	Min	Min	Min	Max	Min	Min	Max	Min	-	-	
4	++-++	Max	Min	Min	Max	Min	Max	Max	Max	Min	Min	2	-	
5	-+-++++	Min	Max	Min	Max	Max	Max	Min	Min	Min	Max	-	R:	
6	+-+++	Min	Min	Max	Min	Max	Max	Max	Min	Min	Min	2	-	
7	+++++++++	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	-	D-	
8	++	Max	Min	Min	Min	Max	Min	Min	Max	Min	Max	-	=	
9	-++-++	Min	Max	Min	Min	Max	Min	Max	Max	Max	Min	-		
10	++++	Max	Max	Max	Min	Min	Min	Max	Min	Min	Max	-	<u>a</u>	
11	-++++	Min	Max	Max	Max	Min	Min	Min	Max	Min	Min	-	<u>4</u>	
12	+-++++-	Max	Min	Max	Max	Max	Min	Min	Min	Max	Min	-	-	

•R.L. Plackett and J.P. Burman proposed this method in 1946 in their famous paper 'The Design of Optimal Multifactorial Experiments" in Biometrika (vol.33).

• This method is very economical and effective in understanding independent effect of each parameter.

COMSOL Model Set-up Incompressible Navier-Stokes

$$\rho \frac{\partial \mathbf{u}}{\partial t} - \nabla \cdot [\eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{F}$$
$$\nabla \cdot \mathbf{u} = 0$$

COMSOL Model Set-up Electrostatics

 $\mathbf{D} = \varepsilon_0 (1 + \chi_e) \mathbf{E} = \varepsilon_0 \varepsilon_r \mathbf{E}$

COMSOL Model Set-up Electrokinetics

$$\frac{\partial c_i}{\partial t} + \nabla \cdot (-D_i \nabla c_i - z_i u_{\text{m}i} F c_i \nabla V + c_i \mathbf{u}) = R_i$$

COMSOL Results pH Distribution at the Exit of the Channel

Statistical Optimization from COMSOL Results: Max pH

 $f_1 = \Sigma_{(i=0,10)} (c_i^* p_i)$

where f_1 =Maximum value of ΔpH , c_i=constant, p_i=parameter

Statistical Optimization from COMSOL Results: Uniform pH

*f*₂=Σ(i=0,10)(c_i*p_i)

where f_2 =Maximum pH Uniformity, c_=constant, p_=parameter

COMSOL Results based on Statistical Analysis: No Potential Applied

COMSOL Results based on Statistical Analysis: Finite Potential Applied

- Most dominant parameters controlling the process are identified.
- An optimized design is proposed by numerical modeling.
- pH gradient of range 1.5-13 with high uniformity is achieved.

Future Work

Experimental Validation.

- Run DOE with more combination of few important parameters to fine tune the current design.
- Continue similar DOE for subsequent channels until a resolution of 0.1 is achieved.

Lynntech would like to thank Army Research, Development and Engineering Command (RDECOM) for funding this research project.

science | evolved

1313 Research Parkway College Station, TX 77845 P. 979.693.0017F. 979.694.8536

www.lynntech.com