Simulation of a Microwave Applicator for the Treatment of Petroleum Emulsions

A. V. Vazquez¹, P. M. G. Vite²

¹Universidad Politécnica de Altamira, Altamira, Tamaulipas, México; Universidad Tecnológica de Altamira, Altamira, Tamaulipas, México ²TEC/NM, Instituto Tecnológico de Ciudad Madero, Ciudad Madero, Tamaulipas, México

Abstract

In Mexico there is a decline in the production of oil deposits due to the lack of effective treatment of oil emulsions, which generate a problem in the reinjection of emulsified water, transport of oil with high water content and corrosion in the oil refineries.

Through the simulation in COMSOL Multiphysics® software, specifically the modules of RF, Heat Transfer and the Materials library, it was possible to simulate a microwave applicator with different geometries to find the ideal geometry where there is a greater energy absorption leading to a better Heating oil and contribute to a better separation. As results obtained it was found that an applicator with cylindrical geometry has a better and uniform heating than with spherical and cubic geometries.

Figures used in the abstract

Figure 1: applicator with cylindrical geometry