Frequency & Electrode Separation Recommendations for EDA Measurements

S. Sridhar, T. J. Akl Biomedical Engineering Team, Analog Devices Inc., Wilmington, MA, USA

Introduction

What is EDA?

- Electrodermal Activity (EDA) is a measure of **changes** in skin conductance.
- Indicative of the individual's autonomic nervous activity which is correlated to their stress and emotional state. [1]

How is it measured?

 By injecting a small AC electric current directly into the skin and measuring the induced voltage drop over time.

What is our objective?

- Increase in interest in tracking vitals such as stress through EDA in wearables
- Need to obtained more robust EDA measurements
- Optimize the design of EDA sensors by specifically considering excitation frequency and electrode separations

Figure 1: Wrist EDA at 100 Hz and 1 cm separation Figure 2: Current density in A/m2 at the mid-slice

<u>Methods</u>

- Frequency domain study using the AC/DC Module Electric Currents Physics Interface on COMSOL Multiphysics
- Develop a model of the forearm as layers of tissue dielectrics. Tissue layers include the skin, fat, bone and muscle in proportions found in the human forearm. [2]
- 2-electrode method of sensing is employed and modelled through the use of 1 cm² square electrodes.
 2-electrode methods are used because EDA relies on the relative changes in skin conductance over time. (Figure 3)
- Simulate sweating by changing conductivity of the skin between dry and hydrated state.

Figure 3: Model of the forearm

- Integral of all the **currents magnitudes**, **J**, at a midslice between two electrodes calculated for each skin conductivity state. (Figure 2)
- Normalized change in current, k, due to change in skin conductivity:

$$k = \frac{J_1 - J_2}{J_1}$$

• Where, J_2 , J_1 are the two integral current magnitudes at two levels of skin conductivity

Results

- Higher value of k indicates better pick-up of EDA
- k values are highest at low frequencies (=100 Hz) and low electrode separations (=0.5 cm).
- The effect of choosing the low frequency is a lot more pronounced than using low electrode separation.
 - 99% increase in k as frequencies are decreased
 - 5% increase in k as separations are reduced
- Low electrode separations could lead to shorting of electrodes due to perspiration.
- Experimental validation by taking impedance measurements at 100 Hz and 50 kHz at 2 cm and 5 cm separations by prepping the skin to induce consistent changes in skin conductivity.
 - Differences between the simulation and experimental results explained by the model dependence on input conductivity values and experimental dependence on skin prep at the two electrode sites.

Figure 4: k values from simulations and experiments

Conclusions

We conclude that choosing low excitation frequencies and shorter electrode separations result in optimum EDA pick-up. However, very short electrode separations can lead to shorting due to sweat in a practical application..

References

- 1. "Publication Recommendations For Electrodermal Measurements". Psychophysiology 49.8 (2012): 1017-1034. Web.
- 2. "An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz 100 GHz." Based on data published by C.Gabriel et al. in 1996.