

Simulation of Optical Properties of the Si/SiO₂/Al Interface at the Rear of Industrially Fabricated Si Solar Cells

Yang Yang, Pietro P. Altermatt

Leibniz University, Hanover, Germany

Institute for Solar Energy Research Hamelin (ISFH)

Motivation

Why do we develop "flat" texturing schemes?

- ✓ Industrially fabricated solar cells have pyramids at the front surface to enhance the optical path length of weakly absorbed rays (light trapping, confinement).
- ✓ Pyramid texture cannot be easily applied to thin (< 30 μ m) Si cells.
- ✓ Scattering at rear (and front) are efficient for light trapping as well.

pyramids

rough surfaces

E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982)

Task and Outline

- 1. Simulation model for reflection at planar and rough interfaces
- ✓ Definition of random surfaces, boundary conditions

- 2. Reflection near the critical incident angle in the Si/SiO₂/Al system
- ✓ Evanescent waves under frustrated total internal reflection (FTIR)

- 3. What kind of roughed schemes will foster scattering at the rear the most?
- ✓ Computation of angularly resolved reflection for various interfaces and materials.
- ✓ Nanoscale metal dots.
- 4. Conclusions

Equations to solve numerically

1. Maxwell equations

$$\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E} \qquad \nabla \cdot \vec{D} = \rho$$
$$\frac{\partial \vec{D}}{\partial t} = \nabla \times \vec{H} - \vec{J} \qquad \nabla \cdot \vec{B} = 0,$$

2. Coupled with materials equations

$$\vec{D} = \epsilon \vec{E}$$
 $\vec{B} = \mu \vec{H}$ $\vec{J} = \sigma \vec{E}$

3. Harmonic formulation: $\vec{E}(\vec{r},t) = \vec{E}(\vec{r})e^{i\omega t}$ $\vec{H}(\vec{r},t) = \vec{H}(\vec{r})e^{i\omega t}$

$$\nabla \times (\mu^{-1} \nabla \times \vec{E}) - \omega^2 \epsilon_c \vec{E} = 0$$
$$\nabla \times (\epsilon_c^{-1} \nabla \times \vec{H}) - \omega^2 \mu \vec{H} = 0$$

Boundary conditions for planar interfaces

lannover

Extraction of R

First, in background field (Si/Si/Si), the power outflow at the interface is taken as incident power P_{i} . Then, the power outflow in the Si/SiO2/AI model is taken as transmitted power P_{t} . The reflectance R at the interface is calculated by:

$$R = 1 - P_t/P_i$$

Simulated (lines) and analytical R (dots)

Boundary conditions for scattering (A)

Random surfaces and statistical angular distributions

Definition of Roughed surfaces

- \checkmark Equidistant set of points in the y-direction with distance Δy
- ✓ Random set of x-values defined with normal (Gaussian) distribution with standard deviation σ
- Connect these points with straight lines to define the rough surface

- Any random number created by computer is pseudo random number
- 10 simulations with different random surfaces with same standard deviation
- ✓ Average boundary integration values of these 10 simulations

Example of simulated reflectance

Boundary conditions for scattering (B)

Comsol " scattered field " solve mode

Global plane wave instead of generated at boundary:

 $E_{gen} = E_{0,gen} e^{ik(\vec{k}\vec{r})} \in \text{Volume}$

Eoiz (or Hoiz) = exp(-i*k0_rfweh*n1*(cos(alpha)*x+sin(alpha)*y))

Comsol solves only for the scattered waves instead of all waves:

$$E_{sc} = E_{0,sc} e^{ik(\vec{n}\vec{r})}$$

Total field is sum of both:

$$E_{tot} = E_{0,sc} e^{ik(\vec{n}\vec{r})} + E_{gen}$$

"Boundary" condition: perfectly matched layer (PML)

Detection of time-averaged energy in segments of 5°

Scattering from Planar and roughed(sd50nm) surfaces

Si/Al system

Incident angle varies from 0° to 180°

Planar surface

Roughed surface

Scattering properties with and without metal dots

Scattering properties with and without metal dots

Conclusions

- 1. Simulation of planar surfaces by means of Floquet boundary condition gives perfect agreement with Fresnel theory.
- 2. Simulation of rough surfaces yield angular distribution of reflection at Si/AI or Si/SiO₂/AI interface.
- 3. An optimally diffuse reflection is achieved with a standard deviation for roughness of about 50nm.
- 4. Random distributed metal dots on Si/SiO₂ interface enhance scattering

Thank you!

