COMSOL CONFERENCE 2016 BOSTON

Quantitative Assessment of Secondary

Flows of Single-phase Fluid through Pipe Bends

¹ Engineering Technology Department, Old Dominion University, Norfolk, VA, USA

Z. Kaldy¹, O. Ayala¹

• **Introduction:** There are hundreds of processes within the industry where a fluid is required to pass through a pipeline system. Due to particle contamination within these fluids, erosion in the piping system is a concern. Replacement of eroded pipes is one of the major costs of maintenance, which is an obvious pitfall in the overall cost of operation in industries. The highest erosion rate is most commonly found in bends. In this research we propose to quantitatively analyze the secondary flow by measuring the flow intensity, vorticity magnitude (maximum, and their locations), maximum secondary velocity module, and mean secondary flow velocity of the flows evolution along the bend.

Computational Methods: Using COMSOL Multiphysics the predefined algorithmic equations

Table 3 Data for simulations presented on Table 2(Highlighted are the maximum values within each simulation)

		Mean Axial	May In Plane		Maximum	Location		
			Velocity [m/s]	Velocity [m/s]		Vorticity [1/s]	r [m]	θ [deg]
		0 [deg]		0.50174	0.1270			
		45 [deg]	-	1.9899	0.5038	888.10	0.0119	17.5
1	$\begin{array}{c} \text{Re} = 100\text{K} \\ \gamma = 1.5 \\ \theta = 90 \end{array}$	90 [deg]	3.95	1.08009	0.2734	1024.70	0.0119	22.4
1		1D		0.60178	0.1523	256.05	0.0116	52.8
		2D		0.383144	0.0970	142.78	0.0108	32.3
		4D	-	0.1872	0.0474	73.65	0.0105	45.0
		0 [deg]		0.17915	0.0454			
		45 [deg]	3.95	0.72639	0.1839	288.02	0.0118	20.5
	$\begin{array}{r} \text{Re} = 100\text{K} \\ \gamma = 6.5 \\ \theta = 90 \end{array}$	90 [deg]		0.315492	0.0799	335.33	0.0119	22.5
2		1D		0.19199	0.0486	65.72	0.0112	11.6
		2D		0.13132	0.0332	43.60	0.0102	17.3
		4D		0.073613	0.0186	25.62	0.0101	19.2
		0 [deg]		0.15231	0.0386			
		45 [deg]		0.25438	0.0644	187,07	0.0119	0.0
	Re = 100K	90 [deg]	_	0.25936	0.0657	173.54	0.0119	22.5
3	$\gamma = 10$	<u> </u>	3.95	0.16642	0.0421	61.06	0.0112	55
	$\theta = 90$	2D	-	0.10042	0.0421	/2 30	0.0112	-16.9
	-	<u>2D</u> 4D	-	0.10782	0.0275	23.06	0.0103	7 5
				0.051230	0.0200	23.00	0.0103	7.5
	-		-	0.051572	0.1306	C2 20	0.0110	21.2
	$Re = 10K$ $\gamma = 1.5$ $\theta = 90$	45 [deg]	0.395	0.15443	0.3910	63.20	0.0116	31.2
4		90 [deg]		0.11655	0.2951	46.23	0.0116	22.4
		ID		0.049049	0.1242	17.51	0.0098	37.1
		2D		0.027904	0.0706	8.72	0.0096	-0.9
		4D		0.011415	0.0289	3.32	0.0100	21.4
		0 [deg]	0.395	0.048251	0.1222			
	Re = 10K $\gamma = 1.5$ $\theta = 45$	22.5 [deg]		0.1368	0.3463	61.52	0.0119	34.1
5		45 [deg]		0.19145	0.4847	76.25	0.0119	45.0
		1D		0.067048	0.1697	14.15	0.0099	22.8
		2D		0.032423	0.0821	6.02	0.0100	36.8
		4D		0.018193	0.0461	1.66	0.0108	27.5
6	Re = 10K $\gamma = 1.5$	0 [deg]	0.395	0.041351	0.1047			
		11.25 [deg]		0.16905	0.4280	32.63	0.0119	47.0
		22.5 [deg]		0.20866	0.5283	92.46	0.0119	46.3
	$\theta = 22.5$	1D		0.070407	0.1782	12.24	0.0107	26.8
	0 22.5	2D		0.040671	0.1030	4.84	0.0104	12.5
		4D		0.012036	0.0305	1.75	0.0100	-7.4
	Re = 1K $\gamma = 1.5$ $\theta = 90$	0 [deg]		0.005117	0.1295			
		45 [deg]	0.0395	0.022922	0.5803	5.85	0.0107	26.1
7		90 [deg]		0.013305	0.3368	5.68	0.0107	12.8
1		1D		0.0067318	0.1704	1.94	0.0096	37.4
		2D		0.0033499	0.0848	1.04	0.0078	2.8
		4D		0.0014049	0.0356	0.33	0.0087	3.1
	Re = 100 $\gamma = 1.5$ $\theta = 90$	0 [deg]		0.00051575	0.1306			
		45 [deg]]	0.0017538	0.4440	0.32	0.0081	8.4
0		90 [deg]		0.001403	0.3552	0.34	0.0080	25.7
8		1D	0.00395	0.00037975	0.0961	0.10	0.0071	-14.0
		2D	1	0.00013363	0.0338			
		4D		0.00011435	0.0289			
					· · · · · · · · · · · · · · · · · · ·		\sim	·

solved, for both laminar and turbulent flow (k- ε) models, include the three dimensional Navier-Stokes equation also known as RANS for conservation of momentum and the continuity equation for conservation of mass. The mesh was created, and analyzed for sensitivity, based off of the most involved simulation that was computed (Re = 100,000; $\gamma = 1.5$; $\theta = 90^{\circ}$) then used for all of the simulations included in this study.

<u>Variables</u>

- Reynolds numbers: 100, 1,000, 10,000, and 100,000
- Three curvature ratios (r/D): 1.5, 6.5, and 10
- Three sweep angles (θ): 22.5, 45, and 90 degrees

Parameters

- Flow intensity
- Vorticity magnitude (maximum and location)
- Maximum secondary velocity module
- Mean secondary flow velocity

Conclusions: As shown on these plots the secondary flow formed within the pipe, as the fluid passes through the elbow, generates two counter-rotating vortices. Although not quantified within this study, a relationship can be noted between the vorticity of the fluid and the dean vortical structures

Reynolds Numbers (i.e. Table 1 Rows: 1, 4, 7, 8; Table 2 Column A)

- The maximum secondary velocity module increases until reaching its maximum at the midsection of the elbow.
- Curvature Ratios (i.e. Table 1 Rows: 1, 2, 3; Table 2 Column C)
- The location of the maximum vorticity at the exit of the pipe elbow are nearly identical.

Boundary Conditions

Outlet - Pressure controlledInlet - Velocity profile

Sweep Angles (i.e. Table 1 Rows: 4, 5, 6; Table 2 Column B)

• The highest magnitude of vorticity and secondary flow was noted for the 22.5 degree sweep which was not expected.

Table 2. A comprehensive table for comparison. The top two rows represent axial flow and the bottom two rows represent vorticity. (A) Comparison between Reynoldsnumbers. (B) Comparison between Sweep Angles (C) Comparison between Curvature Ratios

(II)	Elbow End											-10
(A)				(B)			(C)					

References:

1. K. Sudo, et, al., Secondary motion of fully developed oscillatory flow in a curved pipe. J. Fluid Mech., 237, 189-208 (1992).

2. K. Sudo, et. al., Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend. Experiments in Fluids, 25, 42-49 (1998).

3. G. Homicz, Computational Fluid Dynamics Simulations of Pipe Elbow Flow. Sandia National Laboratories Report, SAND2004-3467 (2004).

4. O. Boiron, et. al., Experimental and numerical studies on the starting effect on the secondary flow in a bend, J. Fluid Mech., 274, 109-129 (2007).

5. B. Timité, et. al., Pulsating Flow for Mixing in a Twisted Curved Pipe. Journals of Fluids Engineering, 131, 121104-1-121004-10 (2009).

6. L. H. O. Hellström, et. al., Turbulent pipe flow downstream of a 900 bend. J. Fluid Mech., 735, R7-1-R7-11 (2013).

7. J. Kim, et. al., Characteristics of Secondary Flow Induced by 90-degree Elbow in Turbulent Pipe Flow, *Engineering Applications of Computational Fluid Mechanics*, **8**, 229-239 (2014). 8. A. K. Vester, et. al., POD analysis of the turbulent flow downstream a mild and sharp bend, *Exp Fluids*, **57**, 1-15 (2015).

9. R. Röhrig, et. al., Comparative computational study of turbulent flow in a 900 pipe elbow. International Journal of Heat and Fluid Flow, 55, 120-131 (2015).

10. Y. Wang, et. al., Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe with Large Curvature Ratio, Hindawi - Mathematical Problems in Engineering, 1-12 (2015).

Excerpt from the Proceedings of the 2016 COMSOL Conference in Boston