

Simulation of Sound Wave Propagation Inside a Spherical Ball Submerged in a Pipeline

Wadie R. Chalgham

University of Louisiana at Lafayette

10/06/2016

- Statement of Problem: Why Pipeline Inspection?
- \circ Objectives and scope
- Numerical Model
- Simulation Results
- Sensitivity Analysis on Leak Noise Propagation
- \circ Conclusions
- Future Work

• Statement of Problem: Why Pipeline Inspection?

- Objectives and scope
- Numerical Model
- **o** Simulation Results
- Sensitivity Analysis on Leak Noise Propagation
- \circ Conclusions
- Future Work

Why Pipeline Inspection?

- High environmental, financial and human risks due to leaks
- Every day leaking pipes lose more than 7 billion gallons of clean drinking water
 - \rightarrow \$11 billion in loss per year from water leaks only.
- In 2013 alone, 623 gas and hazardous liquid pipeline incidents

 \rightarrow 10 fatalities, 47 injuries and \$336 million in property damage.

Why Pipeline Inspection?

72-inch Pipe failure causing more than 100 homes to flood on 2009, Baltimore, MD

Why Pipeline Inspection?

66-inch Pipe water main failure on 2008, Interstate 25, Denver, Colorado

- Statement of Problem: Why Pipeline Inspection?
- Objectives and scope
- Numerical Model
- **o** Simulation Results
- Sensitivity Analysis on Leak Noise Propagation
- \circ Conclusions
- Future Work

Objectives and Scope

 \rightarrow Innovative solution to detect leaks inside a pipeline

- Numerical study Goal: Leak noise propagation inside the pipeline
- How the results will be used?

 \rightarrow Calibrate an inspection tool: a smart spherical ball flowing inside a pipeline

Objectives and Scope

The ball is equipped with a control system and multiple acoustic sensors:

- \rightarrow Relates sound pressure levels to leak detection
- \rightarrow Accounts for the perturbations caused by the fluid flow around the ball

Slide 10

- Statement of Problem: Why Pipeline Inspection?
- Objectives and scope
- Numerical Model
- **o** Simulation Results
- Sensitivity Analysis on Leak Noise Propagation
- \circ Conclusions
- Future Work

Numerical Model

Meshed Model

Geometry

Slide 11

Numerical Model

Simulation Goals:

- Fluid flow around the spherical ball
- Noise level propagation inside the pipeline
- Effect of fluid type, ball material, leak location and initial leak noise on the sound pressure level propagation inside the pipe and through the ball

- Statement of Problem: Why Pipeline Inspection?
- \circ Objectives and scope
- Numerical Model
- **o** Simulation Results
- Sensitivity Analysis on Leak Noise Propagation
- \circ Conclusions
- Future Work

Velocity Results

Velocity Results

Pressure Results

Pressure Results

Sound Pressure Level Propagation

Sound Pressure Level Propagation

- Statement of Problem: Why Pipeline Inspection?
- Objectives and scope
- Numerical Model
- Simulation Results
- Sensitivity Analysis on Leak Noise Propagation
- \circ Conclusions
- Future Work

Effect of Fluid Type

Effect of ± 1.2 dB on the sound pressure level

Effect of Ball Material

Effect of \pm 17.2 dB on the sound pressure level

Effect of Initial Leak Noise Power

Effect of ± 0.48 dB per 1e-11 on the sound pressure level

Effect of Leak Location

Effect of ± 23.6 dB per 1 ft. on the sound pressure level

- Statement of Problem: Why Pipeline Inspection?
- Objectives and scope
- o Numerical Model
- Simulation Results
- Sensitivity Analysis on Leak Noise Propagation
- Conclusions
- Future Work

Conclusions

- The fluid type has an effect of ± 1.2 dB on the sound pressure level
- $\circ~$ The ball outer layer material has an effect of $\pm~17.2~dB$
- $\circ~$ The leak noise has an effect of $\pm~0.48~dB$ per 1e-11 W
- The leak location has an effect of ± 23.6 dB per foot
- \rightarrow Calibrate the control system of the ball connected to the acoustic sensors

- Statement of Problem: Why Pipeline Inspection?
- Objectives and scope
- o Numerical Model
- Simulation Results
- Sensitivity Analysis on Leak Noise Propagation
- Conclusions
- Future Work

Future Work

- Design the Smart Ball
- Real time data

• Build a prototype

• Closed flow loop

Thank you Any Questions?

Simulation of Sound Wave Propagation Inside a Spherical Ball Submerged in a Pipeline Wadie R. Chalgham