## **Relativistic Quantum Mechanics Applications Using the Time** 'Independent Dirac Equation ]n 7 CAGC @Ai `hd\ mg]Wg<sup>a</sup> 'GcZk UfY

A J. Kalinowski<sup>1</sup> 1. Consultant East Lyme, CT y 0°

**Introduction**: COMSOL is used for obtaining the relativistic quantum mechanics wave function  $\Psi_m(x,y,z,t)$  as a solution to the time independent Dirac equation. The steady state probability density (i.e.  $\rho'$ ) evaluation of a particle being at a spatial point is extracted from  $\rho' = \sum |\psi_m|^2$  at point x,y,z, m=1..4.

• Fig.2 validates the radiating steady state cylindrical wave; inner surface is driven with a cylindrical Eigenfunction.



**Computational Methods**: The equations for the behavior of a free particle of mass m with M'=mc/h, c= speed of light,  $h = h/(8\pi)$ , (where h is Plank's constant) are given by the Dirac pde equations [1]:

 $\frac{1}{c} \frac{\partial \Psi_1}{\partial t} + \frac{\partial \Psi_4}{\partial x}$  $\frac{\partial \Psi_4}{\partial x} - i \frac{\partial \Psi_4}{\partial y} + \frac{\partial \Psi_3}{\partial z} + iM' \Psi_1 = 0$  $1 \partial \Psi_2$  $\frac{\partial \Psi_3}{\partial x} + i \frac{\partial \Psi_3}{\partial y} - \frac{\partial \Psi_4}{\partial z} + i M' \Psi_2 = 0$ (1) $c \partial t$  $\frac{\partial \Psi_2}{\partial \Psi_1} + \frac{\partial \Psi_1}{\partial \Psi_1} - iM'\Psi_3 = 0$ <u>1</u>∂Ψ₃ \_  $\partial \Psi_2$  $-\imath \frac{\partial}{\partial y}$  $c \partial t$  $\partial x$  $-\frac{\partial \Psi_2}{\partial Y_4} - iM'\Psi_4 = 0$ 1  $\partial \Psi_4$  ,  $\partial \Psi_1$  ,  $\partial \Psi_1$  $c \partial t$ 

Figure 2 Dirac Cylindrical Wave : (a) Exact Real  $\psi_1$ , (b) FEM Real  $\psi_1$ , (c) Exact Real  $\psi_4$ , (d) FEM Real  $\psi_4$ 

• Fig.3 An incident PW enters an infinite domain via two slits (Fig.3a.). We observe that emerging from the slits interact, waves

and are solved with the "Coefficient-Form PDE". When the wave vector k lies in the xy plane,  $\partial \Psi_m/\partial z$  terms drop out and the 1st and 4th eqs. decouple, where  $\Psi_{1}, \Psi_{4}$  and are solved alone. The time independent solution form of Eq(1) use  $Ψ_m=ψ_m(x,y)e^{-iωt}$ , m=1;4.

**Results:** • Fig.1 validates the plane wave Eigenvalue solution of COMSOL wave compared to an exact solution.



forming bands of constructive (orange) and destructive (green)

Reψ₁∎ 0.3 interference. Fig.3 b-c Slit Enlargement shows that in close at <sup>0.1</sup> cut1, probability Absorbing` Vertical Wall- $\int_{-0.1}^{1}$  density  $\rho'$  is .067 time <sub>-0.2</sub> smaller above the slit /irtual Inlet than in line with the a) Re  $\psi_1$  Absorbing B.C. |Ψ<sub>1</sub>|<sub>■ 0.3</sub> slit, yet back at cut 2, Ψ<sub>4</sub> 0.1 0.08 <sup>o2</sup> ρ' is 18.9 times bigger 0.06 Cut<sub>1</sub> 0.04 <sup>on</sup> above the slit than in 0.02 line. -0.02 -0.04 -0.1 -0.06 -0.08 -0.1 Figure 3 Two Slit **Interference Pattern** c) |Ψ<sub>4</sub>| b) |Ψ<sub>1</sub>| **Conclusions**: The *Coefficient-Form* PDE solved the option successfully time independent Dirac equation. Banded groupings of particle locations as inferred by Fig.3 are also observed experimentally.

Wave Function Eigenvector  $\psi_1$ ,  $\psi_4$  vs. Figure 1 Normalized  $x/\lambda$  Coordinate ; (a) Simulated Infinite Domain FEM Model, (b) FEM Real  $\psi_1$  vs. x,y, (c) FEM Real  $\psi_4$  vs. x,y, (d) Real and Imag.  $\psi_1$ ,  $\psi_4$  of FEM ↔ Exact Comparison Solutions @ Mid Line y=0

**References**:1. P. Strange, Relativistic Quantum Mech., Camb. Univ. Press 1998

Excerpt from the Proceedings of the 2016 COMSOL Conference in Boston