

Ulhas Mohite

Niket Bhatia

COMSOL CONFERENCE 2015 PUNE

Contents

- Introduction
- Brief procedure of acoustic analysis
- Acoustic analysis of engine to predict Sound Pressure Level (SPL)
 - Acoustic Mesh
 - > COMSOL model setup for Acoustic analysis
 - Challenges
 - > Mesh Convergence
- Results
 - Comparison with test results
 - > Results of vibration and acoustic analysis
 - Modifications to reduce overall SPL
- Conclusion

Introduction

Customer demands of quieter vehicles

Regulations concerning noise levels

Sound quality can act as a differentiator

Engine - Source of noise & vibration

Prediction and control of engine NVH performance by structural and acoustic simulation methods

Substantial cost saving and development time reduction of new product

Brief procedure

COMSOL Model set up

Surface acceleration

Load 17 - F = 8.500000E+02

Contour Plot

Displacement(Mag)

-0.000E+00

Max = 1.162E-03

Min = 0.000E+00

Analysis system

Acoustic Mesh – Cut Section

Thickness equal to 1/10th maximum element size

COMSOL Model Setup

Perfectly matched layer

- Importing Acoustic mesh
- Assign appropriate PML domains using Perfectly matched layer feature

Normal acceleration

- Apply nodal acceleration data to engine skin boundaries
- Interpolation of nodal acceleration data

$$\bullet \ n \cdot \left(\frac{1}{\rho_0} \ (\nabla p) + n \cdot a_0\right) = 0$$

Far field calculation

•
$$p(\mathbf{R}) =$$

$$\frac{1}{4\pi} \int \frac{e^{-ik|r-R|}}{|r-R|} \left(\nabla p(r) + p(r) \frac{(1+ik|r-R|)}{|r-R|^2} \right) (r$$

 Pressure calculation outside the computational domain

Importing surface acceleration data

 Code is developed to convert finite element software nodal acceleration results to .csv format

COMSOL model setup

 Generic java file template is developed to reduce model set up time

Challenges

Computation time

- Increased computation time due to high node count of acoustic mesh for 500 – 3000 Hz
- Solution is split into four steps
- a. 500 to 1000 Hz b. 1000 to 1500 Hz
- c. 1500 to 2000 Hz d. 2000 to 3000 Hz
- Computation time is reduced due to low node count of acoustic mesh

Solving for each frequency step (~ 40 steps)

- · Process automation is carried out using Java script
- Compiled model files for Java (Class files) are generated
- COMSOL batch mode is used to solve class files without GUI

Interpolation in COMSOL

COMSOL

Mesh Convergence

Acoustic Mesh 500 to 1000 Hz

Maximum Element Size = 58 mm Boundary Layer Thickness = 5.8 mm

Location	SPL @ 1000 Hz [dB]
LH Side	67.20
RH Side	66.04

Acoustic Mesh 1000 to 1500 Hz

Maximum Element Size = 29 mm Boundary Layer Thickness = 2.9 mm

Location	SPL @ 1000 Hz [dB]
LH Side	67.19
RH Side	66.04

Noise Measurement Setup

 Microphone located in front of engine side cover at a distance of 0.5m

SPL and sound intensity plots correlation

• SPL and sound intensity plots match well with test data

Results of vibration and acoustic analysis

3D Surface SPL Plot

freq(1)=1400 Surface: Sound pressure level (dB) ▲ 105 104 103 102 101 100 99 98 97 96 95 ▼ 33.2

Acoustic Radiation Location

Surface SPL plot helped to identify the critical locations on engine responsible for high SPL

Vibration Analysis

Based on modal analysis and ODS results, structural modifications are carried out in specific areas of engine structure

Modifications

- Rib height and wall thickness increased
- Stiffened mounting location

SPL Comparison – Baseline vs. Modified

With modifications, overall SPL is reduced by 3 dBA

Conclusions

Acoustic analysis of single cylinder motorcycle engine is carried out using COMSOL

Analysis results show a reasonably good correlation with the test data

Process automation is carried out using Java script

- To interpolate nodal acceleration data on engine skin
- To solve the acoustic model for each frequency step
- Corrective actions by carrying out structural modifications can be implemented based on analysis results in early design stage
- Reduces time and cost involved in product development

THANK YOU

