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Microwave Heating Models N

Computer model use science based approach for :
— product formulation
— design product layout
— design package

— develop cooking instructions



Novel Food Product Development N

o (Cafe steamer




Objectives N[

e Develop a comprehensive multiphysics model that

includes:

— Electromagnetic heating

— Heat and mass transfer

— Phase change of water evaporation

— Laminar flow and heat transfer in headspace

e Evaluate the headspace steam on microwave heating

performance



Model Development



Problem Description N
in Food Sample
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J. Chen, K. Pitchai, S. Birla, M. Negahban, D. Jones, |. Subbiah. 2014. Heat and mass transport
during microwave heating of mashed potato in domestic oven — model development,
validation, and sensitivity analysis. Journal of Food Science. DOI: 10.1111/1750-3841.12636. '



Problem Description
in Headspace
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Assumptions N

* Frequency 2.45 GHz
* Moisture condensation in headspace was ignored.

* The radiation from the hot steam to the food
product was ignored.

e EM field and heat source was calculated using room
temperature dielectric properties.



Governing Equations

Electromagnetics — Maxwell’s Equations
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f Microwave frequency
H c Speed of light
_>¥/<__ €, Dielectric constant
3 Dielectric loss factor
® M, Permeability
s - Q Power dissipation density
.
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Governing Equations N[
Phase Change (Water Vaporization / Condensation)

= K- MW (Pv’eq o Pv)
7 RT

K Evaporation rate constant
P, Vapor pressure
H Pv,eq Equilibrium water vapor pressure
T R |deal gas constant
PR - T Temperature
O Mw Molecular weight of vapor/water
e QD
<
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Governing Equations

Momentum Conservation — Darcy’s Law
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Darcy’s velocity,

Kin, Intrinsic permeability
K, Relative permeability
W Dynamic viscosity
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Governing Equations N[

Mass Conservation

0 Cj
a_tl-l_ V- (—DiVCi) + u- VCi = i I/MW
\ Y J \—Y—} e
Diffusion Convection Phase change
%\g\l\ C Concentration of the species
D Diffusion coefficient
—>\f/<—— I Evaporation rate
® u Darcy’s velocity
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Governing Equations N[

Energy Conservation

(pcp)effa +pCpu - VT =V + (kegVT) — A + Q

P fluid density
C, fluid heat capacity
u fluid velocity field
—>\f/<—— (PC,)s  effective heat capacity
® Ko effective thermal conductivity
i L TN A latent heat of evaporation
. I evaporation rate
R Q heat source

Food sample



Governing Equations

Laminar flow of vapor

Navier-Stokes Equation

L
3 T Vipw) =
au+ (u-V)u=V-[-pl
p— T pluViu=V[-p

+1 (Vu + (Vu)T) = %p(v-u)l] + F

p Pressure
M Viscosity




Governing Equations

Heat transfer of fluid

oT
PCp - o + pCpu'VT= V- (kVT)

Fluid density

Fluid heat capacity
Fluid velocity field
Thermal conductivity
Temperature
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Meshing

e Tetrahedral and prime elements
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Simulation Strategy N

EM field
at |12 locations

v

‘ Averaged heat source ‘ Heat from 4 °C for 90 s

v

Laminar flow of vapor
Heat transfer in fluid of vapor

Heat and mass transfer
Phase change of water evaporation
Darcy’s velocity

Fully coupled




Results and Discussion



Velocity in Headspace Animation N[
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Spatial Temperature on Top Surface N

* The headspace steam increased the temperature on
the top surface
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Total Moisture Evaporation

* The headspace steam increased the total moisture
evaporation

Total moisture evaporation, g
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Heating Nonuniformity N

* The headspace steam increased the heating
uniformity on the top surface by 8%, but not for the
whole food product.
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Conclusions N

e A comprehensive model of microwave heating coupled with
heat and mass transfer in food product and headspace was

developed.

* The headspace steam increased the temperature on the top

surface and the total moisture evaporation.

e The headspace steam increased the heating uniformity on the

top surface by 8%, but not for the whole food product.

e The model needs to be further refined and validated before it

can be used by the food industry to assist food development.



Thank you very much !

Jiajia Chen
chenjj0422@huskers.unl.edu
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