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Abstract: In this study, the dam-break type 

two-dimensional gravitational collapse of 

rectangular granular piles in air was numerically 

studied. The frictional behavior of the material 

was based on the von Mises model with the 

Mohr-Coulomb yield surface leading to pressure 

and strain-rate-dependence of shear viscosity. 

The governing equations of the problem were 

solved using the COMSOL two-phase flow CFD 

Module with the level-set method used for 

accurate tracking of interfaces. This model 

successfully captured the stable heaps formed at 

the end of the collapse. The evolutions of shape 

and velocity field for collapsing piles of two 

different initial pile orientations (aspect ratios) 

were investigated. The comparison of the final 

shapes of the collapsed piles was in accordance 

with the experimental measurements available in 

the literature. 
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1. Introduction 
 

Granular materials are manipulated in many 

diverse industries, such as the pharmaceutical, 

agricultural, petroleum, and mining sectors. In 

addition, several processes in geophysical 

settings, including landslides and avalanches, 

also involve the flow of granular materials down 

a slope. Therefore, the study of granular material 

flow is of great importance, as it is central to a 

wide variety of geophysical and industrial 

processes.  

 

Current literature on the collapse of granular 

material includes experimentation, as well as 

mathematical and numerical modeling. 

Experimental studies have mainly focused on the 

effects of different geometric and material 

parameters, such as initial shape, grain size, 

material friction characteristics, and initial 

packing concentration, on collapse dynamics and 

the final shape of slumps [1-4]. There are also 

mathematical models that predict the collapse of 

granular materials, and different rheological 

models have been proposed that predict the flow 

and difficult-to-capture stable heaps formed at 

the end of the collapse [5-7]. Depth-averaged 

approximations and shallow-water equations are 

frequently employed by researchers to simplify 

the governing equations and numerical solutions.  

 

In the present study, we numerically 

investigated a scenario where the collapse of 

rectangular granular piles occurred following a 

dam-break. The flow of this material was studied 

using modified von Mises plasticity models with 

the Mohr-Coulomb yield surface to account for 

the internal angle of friction of the bulk granular 

material. In this material, the constitutive 

relations then have a dynamic shear viscosity 

expressed as a function of strain-rate and 

pressure. 

 

 In general, the two-dimensional form of the 

Navier-Stokes equations is considered without 

the above-mentioned simplifying assumptions. 

This model is capable of predicting different 

collapse stages for different initial geometries, 

including the initial stages of collapse for tall, 

thin piles, when the flow is highly influenced by 

the gravity. Although the governing equations of 

the problem are not restricted to being solved by 

a specific solver or method, we chose the finite-

element COMSOL CFD module in a two-phase 

flow context, where one phase was the granular 

material and the other phase was the surrounding 

air. The interface between the granular material 

and the air was tracked by the level-set method 

provided by the program. 

 

Two piles with different initial geometries, 

one being tall and thin and the other one short 

and thick, were considered. Time-dependent 
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velocity field and slump shape were investigated 

for each case. The results of the final profile for 

each case were compared with the experimental 

works of Balmforth and Kerswell [1], and close 

agreements were observed. 

 

2. Problem Definition 
 

As seen in Figure 1, the initial height and 

length of the granular pile are H and L , 

respectively. The granular material, whose 

properties are described later in the paper, is grit 

surrounded by air. The pile is initially leaning 

against the left-hand side vertical wall (  axisy ) 

and is in contact with the horizontal base (  axisx

). The other two sides of the pile are free and in 

contact with the air.  

 

The two-dimensional collapse of the pile was 

investigated, and the final height and length 

(final runout) of the slump at the end of the 

collapse were h∞ and l∞ . 

 
Figure 1. Schematic of the initial and final 

configurations of the bulk granular material. 

 

3. Rheology of the Granular Material 
 

The approach chosen here to model the flow 

of the granular material has similarities to 

procedures found in [8-10]. The material was 

isotropic with an associated flow rule that 

followed the von Mises plasticity potential with 

the Mohr-Coulomb yield surface. The detailed 

derivation and formulas for the constitutive 

relations, not sought here, can be found in [11].  

 

It can be shown that the above-mentioned 

granular material will have a dynamic shear 

viscosity,η , according to the following equation: 
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in which p , φ , and 2I are pressure, internal 

angle of friction, and the second invariant of the 

deviatoric strain-rate tensor, respectively. For an 
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where 
ij∈� is the strain-rate tensor, and u and v

are velocity vector components in x  and y

directions, respectively. The symbol eps is a 

small quantity corresponding to the floating 

point relative accuracy in COMSOL, and is 

introduced in Equation (2) to avoid a zero value 

in the denominator.  

 

4. Governing Equations and Solution 

Procedure 

 
The governing equations of a continuum in 

the context of fluid mechanics are continuity and 

momentum conservations given respectively by 

the following equations: 
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where ,  ,  ,  ,  superscript ,  ,  ,  ,  and T t ρ∇u σ I g F

are the velocity vector, stress tensor, del 

operator, unit matrix, matrix transpose, 

gravitational acceleration vector, time, density, 

and other body forces, respectively.  Equation 3 

applies to incompressible flows. 

 

To account for the presence of two phases, 

the level-set phase-tracking scheme was 

employed. This method is available in the 

COMSOL two-phase flow CFD module. The 

level-set function,ϕ , was chosen to theoretically 

have three constant values, unity in one phase, 

zero in the other phase, and half on the interface 

of the two phases.  

 

The equation governing the movement of the 

interface is: 

( ),
1

t ls

ϕ
ϕ ϕ γ ϕ ϕ ϕ

ϕ

 ∇
+ ⋅∇ = ∇ ⋅ ∈ ∇ − −  ∇ 

u      (4) 
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in which the right-hand side is added for stability 

of the numerical solution, is the mathematical 

norm, γ is a reinitialization parameter, and ls
∈  is 

a parameter controlling the interface thickness.  

The values of the two parameters, which must be 

tuned for each problem, are given later in the 

paper. For detailed information on the level-set 

method see [12, 13].  

 

Equation (3) is then simultaneously solved 

with Equation (4) for a fixed grid by the FEM 

COMSOL solver. Note that the density and the 

viscosity in the momentum conservation 

equation is replaced with ( )c d c
ρ ρ ρ ρ ϕ= + −

and ( )c d c
η η η η ϕ= + − , respectively. The 

subscripts c and d denote the continuous phase 

(air), and the dispersed phase (grit). The density 

of the two phases and the shear viscosity of the 

air are taken to be constant. 

 

5. Notes on the Model Implementation in 

COMSOL 
 

In this section, the model implementation is 

explained in more detail. 

 

5.1 Initial and Boundary Conditions  

 
It is known that velocities at walls in contact 

with granular material flow do not completely 

vanish [14, 15]. This so-called “partial slip” can 

be modeled by introducing a slip length at the 

walls. Typically, granular shear layers can be up 

to about 8~10 particle diameters. In the present 

study, the slip length is two particle diameters 

thick. For grit with a mean grain diameter size of 

1 mm, this length is 2 mm. 

 

The right-hand side vertical wall in contact 

with air is modeled as a “no-slip” wall, while the 

top wall is a “slip” wall. The initial conditions 

for velocity and pressure fields are zero. 

 

5.2 Dynamic Shear Viscosity of the Granular 

Material 

 

The viscosity of the granular material follows 

Equation (1). However, to avoid numerical 

instabilities, two constant numerical values, α
and β , were introduced to the equation: 

( )
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= +

+
 

                                      (5) 

 

The values for α and β are given later in the 

paper.  

 

To successfully solve the problem, the 

gravity was modeled to gradually increase from 

zero to 9.81 
2m/s in the short period of time of 

about 0.01 seconds. 

 

It is noteworthy to mention that although the 

modeled granular material is cohesionless, a very 

small surface tension of value 
52 10  N/m−×  is 

considered in COMSOL for solution stability.  

  

6. Results  
 

The results for the collapse of two piles of 

different initial geometries are given in this 

section. Pile sizes, material properties, and 

numerical parameters needed for the 

computations are given in Table 1 and Table 2.  

 

 

CASE I: 

 

Figures 2a-c illustrate three snapshots of the 

collapse of the short, thick pile, which represents 

case I. 

 

The collapse starts with the failure of the 

right-top region of the pile. As seen in Figure 2a, 

in the early stages of the collapse, the grains both 

fall and move horizontally (although in the top 

portion of the pile the horizontal component is 

smaller than the vertical). Note a trapezoid-like 

“dead zone” over which there is little or no 

velocity vector distribution. This zone, which has 

the least involvement in the collapse, has been 

experimentally observed in [2, 3]. 

 

As the collapse continues, grit comes in 

contact with the base when it loses momentum. 

There is, however, a flowing region moving 

above the layer in contact with base, as shown in 

Figure 2b. Because of interparticle friction, the 

velocity and thickness of the flowing layer 

decrease over time until the collapse eventually 

ends and stable heaps are formed, as illustrated 

in Figure 2c. 
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Table 1. Initial geometries of the investigated piles and numerical parameters needed for computations. 
maxh is the 

maximum size of elements in each case. 

 
 
Table 2. Material properties of the two phases 

 
         (a) 

      
        (b) 

      
        (c)

Figure 2. Slump shape and velocity field for the thick-short pile, case I, at three different time instances (a), 0.025 st =

, (b) 0.25 st = , and (c) when the collapse ends 0.5 st = . φ is 34 degrees. 

 

Figure 3 compares the final profile of the 

collapsed pile for three different internal angles 

of friction with that of Balmforth & Kerswell [1] 

reported for an experiment in a wide slot. As can 

be seen, the present results can closely predict 

the final runout ( l∞ ), the final height ( h∞ ), and 

the profile away from the fractured part of the  

 

slump before which the surface is horizontal. As 

the internal angle of friction is increased, the 

present result approaches the experimental 

surface at the fractured areas. Note that the 

internal angle of friction reported for grit in [1] 

has a large scatter of 36.5 4.5± degrees. 
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Figure 3. Comparison of the final surface profiles for case I for different internal angles of friction with the 

experimental work of Balmforth & Kerswell [1]. 

 

CASE II: 

 

Figures 4a-c illustrate three snapshots of the 

collapse of the tall, thin pile, representing case II. 

The collapse scenario is similar to the collapse of 

case I except in the early stages. As seen in 

Figure 4a, the early stages of the collapse are 

highly influenced by gravity when a large top 

portion of the pile is vertically moving 

downwards. Similar to case I, there is a region in 

the pile that does not contribute to the collapse. 

This dead zone for case II resembles a triangle.   

 

Figure 4b depicts an instant when the top 

portion of the pile has completely fallen and the 

slump is extending in the horizontal direction, 

while the thickness of the flowing region is 

decreasing. The collapse eventually stops, as 

shown in Figure 4c.  

 

Fig. 5d compares the final free surface 

profiles for three different internal angles of 

friction with that of reported by Balmforth & 

Kerswell [1] for an experiment in a wide slot. As 

expected, an increase in the friction angle 

reduces the final runout while increasing the 

final height. When 34φ = �  the final runout is 

accurately predicted while the final height is 

about 6% underestimated. Conversely, when 

38.75φ = �  , the final height is very close to the 

experimental measurements but the final runout 

is about 13% underestimated. It can then be 

concluded that an angle of friction within the 

range of 34 38.75φ< <� �  can be chosen to 

minimize the difference between the final values 

of runout and height with those of the 

experiment. 

 

Balmforth & Kerswell [1] have reported 

volume expansions observed during the 

experiments. The small difference between the 

present results and the experimental 

measurements might then be attributed to the 

incompressibility assumption made in the 

present study.  

 

7. Conclusions  
 

The gravitational collapse of granular piles 

was modeled based on Mohr-Coulomb von 

Mises plasticity. The governing equations of the 

two-phase flow problem were solved using the 

COMSOL CFD module. The results for 

evolutions of the velocity field and slump shape 

for two grit piles of different initial shapes were 

presented. The final free surface profiles for each 

of the two cases were compared to the 

experimental measurements available in the 

literature, and close agreements were achieved. 
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             (a)   

 
           (b)

                          
        (c)   

Figure 4. Slump shape and velocity field for the tall-thin pile, case II, at three different time instances (a), 0.025 st = , 

(b) 0.3 st = , and (c) when the collapse ends 1.85 st = .φ is 34 degrees. 
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Figure 5. Comparison of the final surface profiles for case II for different internal angles of friction with the 

experimental work of Balmforth & Kerswell [1]. 
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