OST Eastern Switzerland University of Applied Sciences

Acoustic Mixing

Modelling of Acoustically Induced Rapid Mixing Processes in Microchannels using Acoustic Streaming

Simon Wiesinger

ICE – Institut for Computational Engineering

Introduction

Nama et. al. Investigation of Micromixing by acoustically oscillated sharp-edges

Project Scope

- Study the modelling of acoustic mixing
- Implement acoustic mixing using the new acoustic streaming interface of Comsol Multiphysics
- Use the implemented model to carry out a parameter study to
 - 1. study the influence of geometrical parameters on the mixing quality
 - 2. study the influence of process parameters on the mixing quality

Give recommendations for optimal microchannel setups

General Setup

- Two inlets left side
- One outlet right side
- Three pairs of sharp edges
- Fine Mesh required
- About 24'000 elements

Actuation Signals

Actuation is modelled according to Nama. et. al. where the actuation amplitude d_{exp} is a function of channel height z and tip height H

$$d_{exp}(z,H) = 25.3 \cdot d_0 \left[1.22 \left(\frac{z}{H}\right)^2 - 0.29 \left(\frac{z}{H}\right) \right]$$

OST

Test Simulation 2D

Test Simulation 3D

Concentration

Velocity Field (slices)

Setup

- Study of geometrical and process parameters
 - Inlet Velocity, Tip Angle, Tip Height, Tip Distance, Frequency
- Influence on mixing quality
- Original Configuration as basis (green)

Parameter	Value 1	Value 2	Value 3	Value 4	Value 5	Unit
Inlet Velocity	417	556	834	1112	-	$[\mu m s^{-1}]$
Tip Angle	12	-	15	-	18	[°]
Tip Height	160	-	200	-	240	[µm]
Tip Distance	0	-	200	-	300	[µm]
Frequency	4	4.5	5	5.5	6	[kHz]

Effects of Inlet Velocity

OS1

21

Effects of Inlet Velocity

Effects of Tip Angle

Effects of Tip Height

Effects of Tip Distance

Effects of Actuation Frequency

Optimal Microchannel Setups

- Strong influence on mixing quality
 - Inlet Velocity (higher pressure, larger throughput)
 - Tip Height (higher pressure)
- Medium Influence
 - Tip Distance
- ➢No Influence
 - Tip Angle
 - Actuation Frequency

High throughput with medium mixing quality

Medium to high inlet velocity and medium to low tip height

• Perfect and fast mixing with medium throughput

Low inlet velocity and medium to high sharp edges

Conclusion

- Overall modelling acoustic mixing worked very well when using the acoustic streaming interface
 - Easy usage, fast simulations
 - Perfect for parameter studies
- Parameter study showed inlet velocity and tip height as crucial
 - Larger parameter space would improve results
- All in all, acoustic mixing was shown to be a very effective method

