Interaction of the laser with the material - modelling of the microlenses creation

Petr Janicek, Petr Kutalek, Jiri Schwarz, Jan Smolik, Petr Knotek University of Pardubice Faculty of Chemical Technology petr.janicek@upce.cz

From Digital Holographic Microscope

 $h = \alpha_{eff}^{-1} \cdot \ln \frac{F}{r}$

(a) -709 W/cm^2 1600 893 W/cm² 1010 W/cm -1195 W/cm² 1200 Topography (nm) 00 008 008 0 -400 200 300 400 500 100X-line (µm)

We want to model the influence of:

- Exposition time
- Intensity of the laser
- Material properties (especially penetration depth)
- Wavelength of the laser

Model

- https://www.comsol.com/blogs/modeling-laser-materialinteractions-in-comsol-multiphysics/
- Application = localized heat source
- For opaque or nearly opaque material the laser can be treated as (localized) heat source

Stationary solution

Heat transfer

Parameters: diameter of the sample = 10 mm Diameter of laser (heat source) = 0.2 mm Surrounding temperature = T_0 = 300 K Power of dissipiated heat = laser power Out-of-plane thickness d_z = 1 mm

$$\nabla \cdot (-k\nabla T) = Q\delta$$

Dirac distribution

 $Q = {}^{P}/d_{z}$ volumetric heat source

Material parameters: Heat capacity $C_p = 351 \text{ J/(kgK)}$ Thermal conductivity k = 0.58 W/(mK)Density $\rho = 7520 \text{ kg/m}^3$

Introduce temperature dependence of material properties -> Definition - interpolation

Laser power = power of heat source = 0.2 W

Laser power = power of heat source = 0.4 W

Modeling Laser Beam Absorption in Silica Glass with Beer-Lambert Law

Using Radiative Beam in Absorbing Media Interface

(Heat Transfer Module)

Laser Beam Absorption

Governing Equations

Heat Transfer equation

Beer–Lambert Law

$$\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot (k \nabla T) = Q_r$$

$$\frac{e}{\|e\|} \cdot \nabla I = -\kappa(T)I$$

$$Q_r = \kappa(T)I$$

Absorption coefficient

More advanced model

Gauss profile or top-hat profile of laser beam are available

 Boundary Selection Selection: Manual 96 - E ĥ 🕅 Override and Contribution Equation Model Input Beam Orientation Beam orientation: х **e** 0 ▼ Beam Profile Beam profile: User defined Beam power density (1-Reflectivity)*(P_laser/(pi*R_laser^2))*exp(-(x^2+y^2)/(R_laser^2)

Label: Incident Intensity 1

Absorption coefficient $\kappa = 1 / penetration depth$

Multiphysics coupling

Density ho = 7520 kg/m³

y Z

Constant temperature (300 K) on outer boundary

P = 0.1 W

Penetration depth = 256 μ m

Stationary solution

Introducing thermal expansion

The Microactuator Simplified COMSOL

Performing a Multiphysics Analysis of a Thermal Microactuator | COMSOL Blog

Linear Elastic Material I

Unit

N/m²

Description

Strain tenso

Strain tenso

Strain tenso

Strain tenso

Strain tenso

Strain tenso

Strace tonso

Stress tenso

M

- I Click the **Refresh Equations** button.
- 2 In the Model Builder window, expand the Thermal Actuator (compl)> Solid Mechanics (solid)>Linear Elastic Material I node, then click Equation View
- 3 In the Settings window for Equation View, locate the Variables section.

THERMAL MICROACTUATOR SIMPLIFIED 20

4 In the table, enter the following settings:

Name	Expression	Unit	Description	Selection	Details	
solid.eXX	uX-alphaps* (T-TO)	I	Strain tensor, XX-component	Domain I	+ operation	
solid.eYY	vY-alphaps* (T-TO)	I	Strain tensor, YY-component	Domain I	+ operation	
solid.eZZ	wZ-alphaps* (T-TO)	I	Strain tensor, ZZ-component	Domain I	+ operation	

PbO-Bi₂O₃-Ga₂O₃ glasses

Table 2

The characterization of the prepared glasses: density (ρ), thermal properties obtained by TMA (bulk samples; T_g, T_s and CTE) and by DTA (powder form of the samples was used; T_c, T_m), optical properties (optical band gap estimated as E^{03} value, that is energy corresponding to absorption coefficient equal to $10^3 \ cm^{-1}$, and penetration depth of used laser (d_p)).

Property\Abbreviation	PBG0	PBG1	PBG2	PBG3	PBG4	PBG5
Density ρ (g·cm ⁻³)	7.52	7.56	7.60	7.70	7.80	7.89
Glass transition temperature T _g (°C)	408	394	383	377	372	370
Softening temperature T _s (°C)	435	414	418	410	405	398
Coefficient of thermal expansion CTE* (ppm·K ⁻¹)	10.1	9.8	9.6	10.5	10.7	10.9
Crystallization temperature T _c (°C)	499	521	496	480	492	501
Melting point T_m (°C)	759	594	618	597	590	554
Optical band gap E ⁰³ (eV)	3.100	3.075	3.054	3.055	3.057	3.048
Optical penetration depth d_p (µm)	318	285	256	276	284	278

for temperature interval 100–300 $^\circ\mathrm{C}$

P = 0.12 W

P = 0.16 W

experiment

VS.

Conclusions

- Combination of heat transfer + radiative beam in absorbing media + solid mechanics is able to describe spatial distribution of temperature in the material after illumination of laser and also creation of microlens due to thermal expansion.
- Temperature dependences of material properties have significant influence on the results obtained from the model.
- Estimated maximal height of the microlens is higher than experiment for PbO- Bi_2O_3 - Ga_2O_3 glass.

Next plans

- Modelling of the flow of viscous glass when temperature is higher than softening temperature.
- Modelling of ablation leading to creation of micro-craters.

Open question

• Modelling of the case when the penetration depth is higher than the sample thickness

750 μm 50 000 μm 20 µm D y_x

Penetration depth

Sample thickness ~ 1.2 mm

time of enlightenment ~ 10 min

Strong influence of boundary conditions (cooling of the sample)

https://www.comsol.com/blogs/modelingthe-pulsed-laser-heating-of-semitransparentmaterials

References

- J. Smolik, P. Knotek, J. Schwarz, E. Cernoskova, P. Kutalek, V. Kralova, L. Tichy: Laser direct writing into PbO-Ga2O3 glassy system: Parameters influencing microlenses formation. Applied Surface Science 540 (2021) 148368. <u>https://doi.org/10.1016/j.apsusc.2020.148368</u>
- J. Smolik, P. Knotek, J. Schwarz, E. Cernoskova, P. Janicek, K. Melanova, L. Zarybnicka, M. Pouzar, P. Kutalek, J. Stanek, J. Edlman, L. Tichý: 3D microstructuring by CW direct laser writing on PbO-Bi2O3-Ga2O3 glass. Applied Surface Science 589 (2022) 152993. https://doi.org/10.1016/j.apsusc.2022.152993
- P. Kutalek, E. Samsonova, J. Smolik, P. Knotek, J. Schwarz, E. Cernoskova, P. Janicek, L. Tichy: Microlenses formation on surface of stoichiometric Ge-As-S bulk glasses by CW laser direct writing. Applied Surface Science 628 (2023) 157380. https://doi.org/10.1016/j.apsusc.2023.157380

Acknowledgement

- Support from the Faculty of Chemical Technology, University of Pardubice.
- Ministry of Education, Youth, and Sports of the Czech Republic, grant number LM2023037.
- Czech Science Foundation (GA CR), project No. 19-11814S.
- COMSOL support
- Humusoft s.r.o. Czech Republic

