Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

The Magnetic Field from a Permanent Magnet - new

As an example of a magnetostatic problem, consider how to model a horseshoe-shaped permanent magnet. One way is to treat the entire magnet as a ferromagnetic material, where the two end sections are defined as being pre-magnetized in different and opposite directions. An alternative is to set surface currents on the pre-magnetized parts. In this tutorial model, both of the alternatives are ...

Single-turn and Multi-turn Coil Domains in 3D

This tutorial illustrates how to use the Single-Turn Coil Domain and Multi-Turn Coil Domain features for modeling 3D coils. Both DC and AC coil modeling strategies are discussed. A series of simple illustrative tutorials are used to show different possible ways of using the following features. 1. Single-turn coil domain a) Gap feed b) Boundary feed 2. Multi-turn coil domain a) Linear coil b) ...

Modeling of a 3D Inductor - new

Inductors are used in many applications for low pass filtering or for impedance matching of predominantly capacitive loads. They are used in a wide frequency range from near static up to several MHz. An inductor usually has a magnetic core to increase the inductance, while keeping its size small. The magnetic core also reduces the electromagnetic interference with other devices as the magnetic ...

E-core Transformer Using Multi-Turn Coil Domains - new

This is the transient model of a single phase E-core transformer using a Multi-Turn Coil Domain. The model includes the effect of a nonlinear B-H curve in the core and shows how to connect the transformer model to the external circuits using Electric Circuit interface. The simulation is performed for two different cases; the first one with a unity turn ratio and second one with a turn ratio of ...

Computing Capacitance - new

A capacitor, in its simplest form, is a two terminal electrical device that stores electric energy when a voltage difference is applied across the terminals. The stored electric energy is proportional to the applied voltage squared and is quantified by the capacitance of the device. This model introduces a model of a simple capacitor, the electric field and device capacitance are solved for under ...

Magnetic Field of a Helmholtz Coil - new

A Helmholtz coil is a parallel pair of identical circular coils spaced one radius apart and wound so that the current flows through both coils in the same direction. This winding results in a uniform magnetic field between the coils with the primary component parallel to the axes of the two coils. Applications of Helmholtz coils range from canceling the earthâ€™s magnetic field to generating ...

Simulating the Moving Parts of a Generator - new

In this model, a rotor with permanent magnets and a nonlinear magnetic material rotates within a stator of the same magnetic material. The generated voltage in windings around the stator is calculated as a function of time. COMSOL Multiphysics models the rotation with assemblies and identity pairs. The nonlinearity of the magnetic material is also taken into account using an interpolation ...

Voltage Induced in a Coil by Moving Magnet - new

A magnet moving axially through the center of a coil will induce a voltage across the coil terminals. One practical application of this is in shaker flashlights, where the flashlight is vigorously shaken back and forth, causing a magnet to move through a multi-turn coil, which provides charge to the battery. In this model, the motion of a magnet through a coil is modeled, and the induced voltages ...

Fully-coupled Physics with Joule Heating, CFD and Chemical Reactions

In this example, a fluid carrying several chemical components is pumped into a detector compartment. A wire in the center of the detector is heated through Joule heating, which is supposed to detect changes in density through convective cooling. However, the higher temperature around the wire causes the ignition of exothermic chemical reactions, which in turn increase the temperature even more. ...

Integrated Square-Shaped Spiral Inductor - new

This model considers a square inductor that is used for LC bandpass filters in MEMS systems. The simulation calculates the self-inductance. The first step in the modeling is to compute the currents in the inductor. These currents are the source for the magnetic flux computations, carried out in a second step.

Quick Search

1 - 10 of 71 First | < Previous | Next > | Last